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a b s t r a c t 

Stripe noise degradation is a common phenomenon in remote sensing image, which largely affects the 

visual quality and brings great difficulty for subsequent processing. In contrast to existing stripe noise re- 

moval (destriping) models in which the reconstruction is performed to directly estimate the clean image 

from the striped one, the proposed model achieves the destriping by estimating the stripe component 

firstly. Since the stripe component possesses column sparse structure, the group sparsity is employed 

in this study. In addition, difference-based constraints are used to describe the direction information of 

the stripes. Then, we build a novel convex optimization model which consists of a unidirectional total 

variation term, a group sparsity term and a gradient domain fidelity term solved by an efficient alternat- 

ing direction method of multiplier. Compared with the state-of-the-art methods, experiment results on 

simulated and real data are reported to demonstrate the effectiveness of the proposed method. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Remote sensing image plays an important role in many fields,

uch as urban planning, military, and environment monitoring.

owever, different sensors produce inconsistent responses in the

maging process, which leads to the images degraded by stripe

oise. The stripe noise existing in remote sensing image badly de-

rades the visual quality and restricts the precision in data anal-

sis, such as unmixing [1] , classification [2] , and target detection

3] . To reduce the unfavorable effects caused by stripe noise, it is

ritical to develop efficient methods to remove the stripes before

ubsequent applications. The goal of this work is to separate the

tripe component and preserve the stripe-free information. 

In recent decades, a lot of destriping methods have been pro-

osed. Extensively existing destriping methods can be roughly

ivided into three categories: digit filtering-based methods,

tatistics-based methods, and optimization-based methods. It is

orth mentioning that these methods sometimes have over-

ap among this categories. For instance, some optimization-based

ethods may involve statistics-based methodological ideas. 

One straightforward idea for image destriping is filtering. These

ltering-based methods remove stripes by constructing a filter on a

ransformed domain, e.g., Fourier domain filter [4–6] , wavelet anal-
∗ Corresponding authors. 
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sis [7,8] and the Fourier-wavelet combined domain filter [9,10] .

hese methods suppose that the stripes are periodic and can be

learly discovered from the power spectrum. However, some evi-

ent details with the similar features to the stripes also exist in

he stripe-free regions, these details would be excessively filtered

ut, which results in blurring or artifacts of the output image. In

9] , the authors proposed Fourier-wavelet combined domain filter

ethod to remedy this shortage, which better preserves the origi-

al image information in the stripe-free locations. 

Statistics-based methods are also commonly used for image de-

triping [11–16] . These methodological ideas assume that the dis-

ribution of the digital number for each detector approaches is the

ame, e.g., moment matching [11,14] and histogram matching [15] .

he moment matching considers that the changes of the mean

nd standard deviation of each sensor are small, if this assumption

olds, then these methods can remove stripe noise efficiently. The

istogram matching is based on the assumption that the probabil-

ty distribution of scene radiances seen by each sensor is the same.

n general, statistics-based methods are easy to perform, and the

omputational process is fast, but these methods are greatly deter-

ined by the preestablish reference moment or histogram. 

At present, optimization-based models have attracted many at-

entions and are widely applied to image destriping. Regarding

he destriping problem as a conventional ill-posed inverse problem

17–21] , existing regularization methods are employed to solve the

estriping problem by introducing prior information. These meth-

ds compute the desired image by minimizing an energy function
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under some regularization terms. Shen and Zhang [17] established

maximum a posteriori (MAP) framework and added Huber–Markov

prior information for destriping and inpainting. In [18] , the authors

made the advantages of direction information of the stripes and

proposed an unidirectional total variation (UTV) model to remove

stripe noise. However, the method in [18] recognized the stripe re-

gions and stripe-free regions inaccurately and produced a poor per-

formance on heavy stripe noise. To overcome these weaknesses of

UTV model, many researchers have proposed some modified UTV

models [19,20,22,23] . In [20] , the authors proposed a UTV-Stokes

model, which avoids excessive over-smoothing by distinguishing

stripe regions and stripe-free regions. In hyperspectral image de-

striping field, some researchers also considered the low-rank ma-

trix recovery by exploiting the high spectral correlation between

the latent image in different bands [24–26] . In [25] , the authors

proposed the graph regularizer low-rank representation (LRR) de-

striping method by incorporating the LRR technique, which is the

first work to use LRR technique for destriping. 

However, most of existing methods focus on directly estimating

the clean image from observed one, paying much attention to the

image itself, while without considering the directional and struc-

tural properties for the stripes, which would result in many image

details may be removed along with stripes and residual stripes ex-

isting in the latent image. Recently, Liu et al. [27] obtains the de-

striping image from a novel perspective, which is first to estimate

the stripe component and then utilizes the difference between ob-

served image and stripe component to obtain the final destrip-

ing image. The global sparsity and local variational properties of

the stripe component are considered in [27] to estimate the stripe

component. The authors used � 0 -norm-based regularization to de-

scribe global sparse distribution of the stripes. But the � 0 -norm is

non-convex, and global sparsity fails to reflect the inner structure

of stripe component. Moreover, the sparsity property of stripes has

disappeared when the stripes are too dense. To remedy this defi-

ciency, the goal of this work is to focus on exploring stripes prior

and achieving better stripe noise removal results. 

In this paper, we introduce the group sparsity that is depicted

by � 2, 1 -norm to describe the inner structure of stripe component

and generate better results than recent state-of-the-art methods.

Actually, the stripe image can be viewed as consisting of clean im-

age and stripe component, and these two components can be re-

garded as equally. To obtain the clean image, which is equivalent

to the problem of estimating the stripe component. Since the stripe

component possesses line-by-line structures, we employ � 2, 1 -norm

regularization to preserve the structure. Moreover, as the stripe

noise has a clear directional feature, we also consider the differ-

ential properties of the along-stripe direction and across-stripe di-

rection. Finally, we propose a novel optimization-based model for

remote sensing image destriping problem. To solve the proposed

convex model efficiently, an alternating direction method of multi-

pliers (ADMM) based algorithm is developed to solve it. The main

ideas and contributions of the proposed method are summarized

as follows: 

• As the stripe noise has obvious directional and structural prop-

erties, we employ these properties to construct a convex sparse

optimization model that is solved by ADMM method. In partic-

ular, the convergence of the proposed method is guaranteed. 

• We explore the group sparsity property of stripe noise in re-

mote sensing image via implementing statistical analysis, and

utilize � 2, 1 -norm regularization to depict the group sparsity

property. 

• Numerical experimental results, including simulated and real

experiments, demonstrate that the proposed method outper-
forms the state-of-the-art results. t
The rest of this paper is organized as follows. In the next sec-

ion, we present the stripe component properties in details. In

ection 3 , the proposed model and optimization method are de-

cribed. Section 4 presents some numerical experiments to demon-

trate the effectiveness and satisfactory performance of the pro-

osed method. Finally, we conclude paper in Section 5 . 

. Stripe component properties analysis 

Unlike other types of noises, the stripe noise has obviously di-

ectional and structural properties. How to design an appropriate

egularization terms to describe these properties is the key issue

n the stripe noise remove problem. 

.1. Problem formulation 

The striping effects in remote sensing images are modeled as

n additive noise [17,18] , and thus the stripes degradation process

an be formulated as 

f (x, y ) = u (x, y ) + s (x, y ) , (1)

here f ( x, y ), u ( x, y ), and s ( x, y ) represent the degraded image from

he detectors, the potential stripe-free image, and the stripe com-

onent at the location of ( x, y ), respectively. For the purpose of

iscussing numerical algorithm, a matrix-vector form of (1) can be

ewritten as follows 

 = u + s , (2)

here f , u , and s stand for the vectorized discrete version of f ( x,

 ), u ( x, y ), and s ( x, y ), respectively. In previous works, most of de-

triping methods aim to directly compute stripe-free image u from

he degraded image f . However, here we change our perspective to

xplore the further properties of stripe noise and propose a more

fficient method to remove stripe noise and retain pixel values of

tripe-free regions. This paper concentrate on extracting the stripe

omponent s from degraded image f . The framework of the pro-

osed method is illustrated in Fig. 1 . 

.2. Directional and structural properties of stripe component 

To precisely estimate the stripe component, the key issue now

s to excavate the properties of stripe component, and to depict

hem in appropriate regularization terms. Firstly, we use statistics-

ased method [16] (SLD) which achieves destriping by estimat-

ng the stripe component to remove stripe noise in MODIS image.

n the meanwhile, we show the gradients of the stripe image at

wo directions: horizontal and vertical direction, and the results as

hown in Fig. 2 . From the results, we can find that the stripe com-

onent possesses directional property and structural property. 

(1) Directional property : Figs. 2 (d)–(e) show the gradients of

tripe component in horizontal and vertical direction. From which,

e can observe that the vertical gradient is quite sparse that indi-

ates the stripe component has good smoothness in vertical direc-

ion. To preserve the stripe gradient well in vertical direction, we

mploy the sparse regularization on gradient domain to constrain

t. The best choice is to employ � 0 -norm [27] that counts nonzero-

lement-number or hyper-Laplacian prior distribution that is de-

icted by � p -norm (0 < p < 1) [28] . However, these are non-convex

roblems, and the globally optimal solution is hard to find. In addi-

ion, the results of � 0 norm and � p norm are sensitive to the initial

oint, and the convergence of algorithm fail to guarantee. Here, we

se � 1 -norm which is a convex function as the sparse regulariza-

ion that is given as 

 1 ( s ) = ‖∇ y s ‖ 1 , (3)

here ∇ y denotes the linear first-order difference operators in ver-

ical direction. 
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Fig. 1. The framework of the proposed model. 
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Moreover, Figs. 2 (f)–(g) show the gradients of the degraded im-

ge at two directions. Due to the existing stripe noise, it may affect

he horizontal gradient, while the vertical gradient is not affected

eriously. To remove the stripe noise, it requires the horizontal gra-

ient of the desired image u smooth. Thus, the unidirectional total

ariation [18] of the desired image is considered as 

 2 ( s ) = ‖∇ x u ‖ 1 = ‖∇ x f − ∇ x s ‖ 1 , (4)

here ∇ x denotes the linear first-order difference operators in the

orizontal direction. 

(2) Structural property : Furthermore, the stripe component is

ifferent with random noise, and it presents special column struc-

ure as shown in Fig. 2 (c). In [27] , the authors considered that the

tripe component can be regarded as a sparse matrix with a plenty

f zero elements in the stripe-free regions and applied � 0 -norm

egularizer to the stripe matrix as 

 ( s ) = ‖ s ‖ 0 . (5)

he sparsity in (5) assumes that sparse elements are distributed

andomly, but it fails to consider the inner structure among these

lements. Actually, the stripe matrix can be viewed as consisting of

olumn vectors, and each column is regarded as a group. Interest-

ngly, the stripe-free column elements tend to be all zeros, and the

tripe columns are all non-zeros. It motivates us to employ group

parsity regularization which depicted by � 2, 1 -norm [29] to con-

train the stripe component, and it is more reasonable than spar-

ity regularization to preserve the structure of stripe component. 

In Fig. 2 (h), the horizontal axis denotes the column number,

nd the vertical axis stands for the 2-norm value of each column.

t is obvious that there are few clear impulse which values are

reater than the adjacent ones, and the values of most vertical bars

re close to zero. In fact, the pixel values are all zeros in stripe-free

olumns, thus the small values can be regarded as the calculation

rrors of the model. Therefore, from Fig. 2 (g), it demonstrates again

hat the group sparsity regularization can be better to describe the

tructural property of stripe component than sparsity regulariza-

ion. Thus, we have designed the regularization term as 
 3 ( s ) = ‖ s ‖ 2 , 1 . (6) t
. The proposed method 

Here, we will give the proposed model and its optimiza-

ion procedure. Although there are some similar destriping works

18,27] , they fail to take the structural property of stripe compo-

ent into consideration. However, the stripe component has a sig-

ificantly column structural property, which is worth considering

o separate the stripe component and preserve the stripe-free in-

ormation in the destriping process. 

.1. The proposed model 

Based on the above analysis, the stripe component has signif-

cantly directional property and structural property. By combining

 1 , R 2 and R 3 , we propose the stripe noise removal model as fol-

ows 

 = arg min 

s 
{‖∇ y s ‖ 1 + λ1 ‖ s ‖ 2 , 1 + λ2 ‖∇ x f − ∇ x s ‖ 1 } , (7)

here λ1 and λ2 are two positive regularization parameters to bal-

nce the three terms. For the convenience of discussion, we con-

ider each stripe line as a column. If the stripes are horizontal, we

otate them to make the stripe lines vertically. When stripe com-

onent s is extracted from the stripe image f , the final destriping

mage can be estimated by the following formula 

 = f − s . (8) 

.2. ADMM optimization 

It is difficult to directly solve s from (7) since the � 1 -norm

erms are nondifferentiable and inseparable. To overcome this dif-

culty, we utilize an efficient algorithm to deal with this non-

mooth and convex optimization model. In previous works, the

DMM algorithm [30–32] is a popular and efficient optimization

ethod to solve convex model, such as � 1 -norm-based minimiza-

ion [33,34] and total variation (TV) model [35–37] in image pro-

essing. Therefore, we employ it to optimize the proposed convex

estriping model (7) . 

The basic idea is to convert the unconstrained minimization

roblem on s in (7) into a constrained optimization model. By in-

roducing three auxiliary variables z = ∇ y s , v = s , and w = ∇ x f −
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Fig. 2. Destriping results in Terra MODIS band 33 by SLD. (a) Original image; (b) image component; (c) stripe component; (d) horizontal gradient of (c); (e) vertical gradient 

of (c); (f) horizontal gradient of (a); (g) vertical gradient of (a); (h) the 2-norm each column of (c). 
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∇ x s . The minimization of (7) is equivalent to the constrained prob-

lem 

arg min 

s , z , v , w 

{ ‖ z ‖ 1 + λ1 ‖ v ‖ 2 , 1 + λ2 ‖ w ‖ 1 } 
s.t. z = ∇ y s , v = s , w = ∇ x f − ∇ x s . 

(9)

Subsequently, by strictly applying the ADMM algorithm, the (9) can

further be converted into the following minimization problem of

augmented Lagrange function 

arg min 

s , z , v , w 

‖ z ‖ 1 + λ1 ‖ v ‖ 2 , 1 + λ2 ‖ w ‖ 1 + p T 1 (∇ y s − z ) 

+ p T 2 ( s − v ) + p T 3 (∇ x f 

− ∇ x s − w ) + 

β1 

2 

‖∇ y s − z ‖ 

2 
2 + 

β2 

2 

‖ s − v ‖ 

2 
2 + 

β3 

2 

‖∇ x f − ∇ x s − w ‖ 

2 
2 , 

(10)

where p 1 , p 2 , and p 3 denote the Lagrange multipliers; β1 , β2 , and

β3 are three positive penalty parameters. In final, the problem

(10) can be solved iteratively and alternatively by solving the fol-

lowing four simpler subproblems. 
(1) The z subproblem is followed by 

z = arg min z 

{‖ z ‖ 1 + p T 1 (∇ y s − z ) + 

β1 

2 
‖∇ y s − z ‖ 

2 
2 

}
= arg min z 

{‖ z ‖ 1 + 

β1 

2 
‖∇ y s − z + 

p 1 
β1 

‖ 

2 
2 

}
, 

(11)

hich can be efficiently solved by the following soft-threshold

hrinkage operator [38] 

 

k +1 = shrink 

(
∇ y s 

k + 

p k 1 

β1 

, 
1 

β1 

)
, (12)

here 

shrink (r, θ ) = 

r 

| r| ∗ max (| r| − θ, 0) . (13)

(2) Similarly to z subproblem, the w subproblem can be easily

olved by 

w = arg min w 

{ λ2 ‖ w ‖ 1 + p T 3 ( ∇ x f − ∇ x s − w ) + 

β3 

2 ‖∇ x f − ∇ x s − w ‖ 

2 
2 } 

= arg min w 

{
λ2 ‖ w ‖ 1 + 

β3 

2 
‖∇ x f − ∇ x s − w + 

p 3 
β3 

‖ 

2 
2 

}
, 

(14)
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Fig. 3. Simulated destriping results for the nonperiodical stripes. (a) Original image; (b) stripe image; (c) WAFT; (d) SLD; (e) GSLV; (f) proposed method; (g) estimated stripe 

component by proposed method; (h) mean value comparison among the stripes estimated by proposed, SLD, GSLV, and the original one. Readers are recommended to zoom 

in all figures for better visibility. 
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k +1 = shrink 

(
∇ x f − ∇ x s 

k + 

p k 3 

β3 

, 
λ2 

β3 

)
. (15) 

(3) Minimizing (10) with respect to v gives the following v -

ubproblem 

 = arg min 

v 

{
λ1 ‖ v ‖ 2 , 1 + p T 2 ( s − v ) + 

β2 

2 

‖ s − v ‖ 

2 
2 

}
, (16) 

hich has an approximated solution by the following soft-

hrinkage formula [29] 

 

k +1 
g i 

= max 

{
‖ r i ‖ 2 − λ1 

β2 

, 0 

}
r i 

‖ r i ‖ 2 

, r i = s k g i 
+ 

1 

β2 

(
p k 2 

)
g i 
, (17)

here g i denotes each group of the image. Here, we regard each

olumn of the image as a group. 

(4) The s subproblem is described as follows 

 = arg min 

s 

{
β1 

2 

‖∇ y s − z + 

p 1 
β1 

‖ 

2 
2 + 

β2 

2 

‖ s − v + 

p 2 
β2 

‖ 

2 
2 
+ 

β3 

2 

‖∇ x f − ∇ x s − w + 

p 3 
β3 

‖ 

2 
2 

}
, (18) 

his is a quadratic optimization and differentiability. It is equivalent

o solve the following linear system 

β1 ∇ 

T 
y ∇ y + β2 + β3 ∇ 

T 
x ∇ x 

)
s k +1 = β1 ∇ 

T 
y 

(
z k +1 − p k 1 

β1 

)

+ β2 

(
v k +1 − p k 2 

β2 

)
+ β3 ∇ 

T 
x 

(
∇ x f − w 

k +1 + 

p k 3 

β3 

)
. (19) 

n this work, we consider periodic boundary condition for s , then

 

T 
y ∇ y and ∇ 

T 
x ∇ x are block circulant matrices with circulant blocks.

or the detailed discussion, we refer the reader to [39] . Therefor,

he matrix on the left-hand side of (19) can be diagonalized by

wo-dimensional discrete Fourier transform F . Using the convolu-

ion theorem of Fourier transforms, we can obtain the solution of

 as follows 

s k +1 = F 

−1 

(
A 

β1 F (∇ y ) ∗ ◦ F (∇ y ) + β2 + β3 F(∇ x ) ∗ ◦ F(∇ x ) 

)
, 

(20) 
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where A = β1 F (∇ y ) 
∗ ◦ F ( z k +1 − p k 

1 
β1 

) + β2 F( v k +1 − p k 
2 

β2 
) +

β3 F (∇ x ) 
∗ ◦ F (∇ x f − w 

k +1 + 

p k 
3 

β3 
) , “∗” denotes complex conju-

gacy, “◦” denotes component-wise multiplication, and the division

is component-wise as well. F(·) represents the fast Fourier

transform and F 

−1 (·) denotes its inverse transform. 

Finally, the Lagrange multipliers p 1 , p 2 , and p 3 are updated in

each iteration as follows ⎧ ⎨ 

⎩ 

p k +1 
1 

= p k 1 + β1 

(∇ y s 
k +1 − z k +1 

)
, 

p k +1 
2 

= p k 2 + β2 

(
s k +1 − v k +1 

)
, 

p k +1 
3 

= p k 3 + β3 

(∇ x f − ∇ x s 
k +1 − w 

k +1 
)
. 

(21)

From the above, we take advantage of the ADMM algorithm

to separate the difficult optimization problem (7) into before-

mentioned four easy subproblems. The z , v , and w subproblems

obtain approximate solutions by using the efficient soft-

thresholding operator. Meanwhile, the s subproblem is a linear

system, we can choose FFT to solve it efficiently. Moreover, the

Lagrange multipliers p 1 , p 2 , and p 3 can be updated parallelly. The

algorithm for solving our model (7) is summarized as Algorithm 1 .

Algorithm 1 The proposed destriping algorithm. 

1: Input : Stripe image f , parameters λ1 , λ2 , β1 , β2 , and β3 . 

2: Initialize : Set s 0 = 0 , z 0 = v 0 = 0 , w 

0 = ∇ y f , p 0 
1 

= p 0 
2 

= p 0 
3 

= 0 ,

and ε = 10 −4 . 

3: while ‖ ( f − s k ) − ( f − s k −1 ) ‖ / ‖ f − s k ‖ > ε and k < N max do 

4: Solve z k +1 , v k +1 , w 

k +1 via (12), (17), and (15), respectively 

5: Solve s k +1 by (20) 

6: Update p k +1 
1 

, p k +1 
2 

, and p k +1 
3 

by (21). 

7: end while 

8: Output : u 

k +1 = f − s k +1 . 

3.3. Convergence analysis 

In this subsection, we will illustrate the convergence of the pro-

posed method. In fact, although there are four components in the

constrained problem (9) , they can be categorized as two parts. Ac-

tually, let 

H = 

( 

z 
v 
w 

) 

, G = s , g( H ) = ‖ z ‖ 1 + λ1 ‖ v ‖ 2 , 1 + λ2 ‖ w ‖ 1 . 

(22)

Then, (9) can be further expressed in a compact form 

arg min 

H , G 
g( H ) , subject to A H + B G = C , (23)

where A , B , and C are given by 

A = 

( −I 0 0 

0 −I 0 

0 0 −I 

) 

, B = 

( ∇ y 

I 
−∇ x 

) 

, C = 

( 

0 

0 

−∇ x f 

) 

. (24)

The problem (23) fits the framework of ADMM, and the resulting

augmented Lagrangian function (10) can be rewritten as 

L ( s , z , v , w ) 

= ‖ z ‖ 1 + λ1 ‖ v ‖ 2 , 1 + λ2 ‖ w ‖ 1 

+ 

〈 ( 

p 1 
p 2 
p 3 

) 

, 

( ∇ y 

I 
−∇ x 

) 

s + 

( −I 0 0 

0 −I 0 

0 0 −I 

) ( 

z 
v 
w 

) 

+ 

( 

0 

0 

∇ x f 

) 〉 

+ 

β

2 

∥∥∥∥∥
( ∇ y 

I 
−∇ x 

) 

s + 

( −I 0 0 

0 −I 0 

0 0 −I 

) ( 

z 
v 
w 

) 

+ 

( 

0 

0 

∇ x f 

) 

∥∥∥∥∥
2 

, (25)
2 
here p 1 , p 2 , and p 3 are the vectors corresponding to the Lagrange

ultipliers to the linear constraints, and β is the positive penalty

arameter. 

The optimization problem (25) is well structured since all the

ariable can be separated into two groups, H and G , and the vari-

bles z , v , and w are decoupled. Therefore, The convergence of the

lgorithm is theoretically guaranteed [32] . 

. Experiment results 

In the experiment, we employ two types of data, i.e., simulated

ata and real data, to compare the performance of our method

ith three state-of-the-art methods. The comparison methods in-

lude: filtering-based method [9] (WAFT), statistics-based method

16] (SLD) and optimization-based method [27] (GSLV). For the

onvenience of the parameter selection, the gray values of the

tripe images are normalized to the domain [0, 1]. All experiments

re run in MATLAB (R2014a) on a desktop of 8GB RAM, Inter (R)

ore (TM) i5-4590 CPU, @3.30 GHz. 

To give an overall evaluation, some qualitative and quantita-

ive assessments are employed for comparison. For the experi-

ents of simulated data, the qualitative indices include the vi-

ual performance and the mean cross-track profile. Moreover,

e utilize two objective quantitative assessments, i.e., the peak

ignal-to-noise ratio (PSNR) and the structural similarity (SSIM)

40] http://www.ece.uwaterloo.ca/ ∼z70wang/research/ssim/ , which

re full-reference evaluation indices. For the experiments of real

ata, since without ground-truth image as reference, we select the

o-reference evaluation indices: noise reduction (NR) [17,18,25] ,

ean relative deviation (MRD) [17,25,41] , and image distortion (ID)

18,42] . NR is special for evaluating the global performance of de-

triping in the frequency domain. MRD is used to assess the per-

ormance of preserving the original healthy pixel in stripe-free re-

ions, and ID is utilized to assess the distortion of destiping im-

ge. For the qualitative index, we choose power spectrum curve to

how the destriping ability. Generally speaking, The large values of

SNR, SSIM, NR, and ID indices and lower MRD mean the better

estored image. 

Parameters selection : The proposed method involves two reg-

larization parameters λ1 and λ2 . To show the robustness of

ur model, we empirically fix the parameter λ1 = 0 . 001 and the

enalty parameters β1 = β2 = β3 = 0 . 1 . Since the dense levels of

he stripe component is different, we empirically set λ2 ∈ [0.001,

.1]. For the compared methods, we have tried our best to tune

heir parameters according to the authors’ suggestion in their pa-

ers to obtain the best results. 

.1. Simulated experiments 

In our simulated experiments, we choose two kinds of stripe

oise on two different ground truth images to confirm the ef-

ectiveness of the proposed method. Nonperiodical stripes in

he MODIS image band 32 that is available from the web-

ite https://ladsweb.nascom.nasa.gov/ , and periodical stripes in the

KONOS image which can be downloaded from on website https:

/openremotesensing.net/ . Before simulated process, the clean im-

ges are coded to an 8-bit scale for showing convenience. Then the

ynthetic stripes with intensity [0, 255] are added into the clean

mage based on the degradation model (2) . Finally, the simulated

mages are scaled into the interval [0, 1]. 

Nonperiodical stripes: Fig. 3 (a) shows the original MODIS image

and 32. To avoid the man-made influence, the location and the

ntensity value of each stripe line are randomly selected on the im-

ge, and Fig. 3 (b) shows the results of stripe image. The destriping

esults of the four comparing methods are shown in Fig. 3 . From

ig. 3 (c), WAFT fails to remove the obvious stripes, since there are
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Fig. 4. Simulated destriping results for the periodical stripes. (a) Original image; (b) stripe image; (c) WAFT; (d) SLD; (e) GSLV; (f) proposed method; (g) estimated stripe 

component by proposed method; (h) mean value comparison among the stripes estimated by proposed, SLD, GSLV, and the original one. Readers are recommended to zoom 

in all figures for better visibility.(For interpretation of the references to color in this figure, the reader is referred to the web version of this article). 
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any residual stripes left, and it may result in blur effect in some

egions. SLD method removes most evident stripes, but some ar-

ificial stripes are still existing as shown in Fig. 3 (d). In Fig. 3 (e),

SLV method can remove all stripes, but some pixel values of the

tripe-free regions are destroyed. Comparing with the three meth-

ds, the proposed method obtains the best destriping results and

hows the better visual performance in Fig. 3 (f). Fig. 3 (g) shows the

tripe component which extracted by our method, it can be seen

hat the stripe-free areas information preserve well. 

Since SLD, GSLV and the proposed method achieve destriping

y estimating the stripe component, we compare the stripes es-

imated by the three methods with the real stripes. In Fig. 3 (h),

he horizontal axis denotes the column number, and the vertical

xis stands for the mean value of stripe component. It is obvious

hat the two comparing methods lead to some minor errors at

he stripe-free locations. In contrast, the stripe component esti-

ated by our method is almost the same as the original stripes,

t demonstrates that the proposed method has the ability of pre-

erving stripe-free details in the remove stripes process. 
Periodical stripes: To illustrate our method can be applied to var-

ous stripe noise, the periodical stripes are added to the ground-

ruth image. Fig. 4 shows the destriping results for the periodical

tripes case. As displayed in Fig. 4 (c), WAFT method fails to re-

ove all stripes, with few stripes left in the image. SLD, GSLV, and

he proposed method give the better visual results for destriping

see in Figs. 4 (d)–(f)). However, in Fig. 4 (h), we can find that SLD

nd GSLV methods fail to precisely estimate the stripe component,

nd they will result in blur effect and image details destroyed.

he proposed method, in contrast, estimates the stripe compo-

ent successfully, and also prevents extra background information 

oss. 

Fig. 5 shows the mean cross-track profiles of the IKONOS im-

ge shown in Fig. 4 as an example. The horizontal axis represents

he column number, and the vertical axis denotes the mean value

f each image column. The red dotted line stands for the clean

mage, and the blue line is destriping results. Fig. 4 shows that

he four comparing methods can almost completely remove stripe

oise from the stripe image. However, in Fig. 5 , it is clear to see



102 Y. Chen et al. / Neurocomputing 267 (2017) 95–106 

Fig. 5. Mean cross-track profiles of Fig. 4 . (a) WAFT; (b) SLD; (c) GSLV; (d) proposed method. 

Table 1 

Quantitative results (PSNR (dB) and SSIM values) on simulated data. 

Stripe noise Case Index Degraded WAFT SLD GSLV Proposed 

Nonperiodical Case1 PSNR 23.05 35.45 36.77 38.12 49.14 

SSIM 0.656 0.985 0.994 0.996 0.999 

Case2 PSNR 18.27 32.94 33.05 34.47 46.63 

SSIM 0.310 0.982 0.994 0.996 0.999 

Periodical Case1 PSNR 20.68 37.18 38.47 38.09 52.63 

SSIM 0.588 0.989 0.993 0.994 0.999 

Case2 PSNR 17.67 35.02 37.43 38.04 51.29 

SSIM 0.458 0.987 0.995 0.994 0.998 
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that WAFT, SLD, and GSLV methods fail to precisely estimate the

original image, which 

indicates the destriping image distortion and blur problems.

Unlike the three methods, the proposed method keeps a right

curve tendency, and the column mean values of the destriping im-

age are the same as the original image. It demonstrates that the

proposed method can preserve stripe-free information and image

details, as well as precisely estimate the stripe component. Table 1

shows the PSNR and SSIM values of simulated experiments, and

the highest values are marked in bold. From the Table 1 , it is clear

that, in terms of the two indices, the proposed method obtains the

best performance significantly. 

4.2. Real experiments 

In this subsection, we further test the real remote sensing

stripe images to illustrate the efficiency of the proposed method.
wo real stripe images with different stripe noise distributions 

ownloaded from the website https://ladsweb.nascom.nasa.gov/

re selected to test. Fig. 6 shows the results of Terra MODIS im-

ge which is degraded by nonperiodical stripes. From Fig. 6 (c), SLD

ethod obtains a poor performance comparing with other meth-

ds, and many obvious stripes are still existing in the image. For

AFT and GSLV methods, the stripe noise is almost removed com-

letely, but some residual stripes can be seen in the image. From

ig. 6 (g), the proposed method successfully suppresses the stripe

oise with fewer artifacts. 

In addition, the results on Aqua MODIS image which is gravely

egraded with periodical stripes are presented in Fig. 7 . From

igs. 7 (b)–(c), the destriping results obtained by WAFT and SLD

how some residual stripes in the elliptical mark. As GSLV method,

ll stripes can be removed completely, but some regions are

lurred in Fig. 7 (d). Fig. 7 (g) shows that the proposed method

s better than the three comparing methods in term of removing

tripes, preserving the stripe-free information and minimizing ar-

ifacts. 

Fig. 8 shows the power spectrum of Aqua MODIS image shown

n Fig. 7 as an example. The horizontal axis denotes the normalized

requency while the vertical axis represents the averaged power

pectrum of all rows. Due to the influence of stripe noise, there

re some impulses in the curve. After destriping, the impulses are

reatly reduced. However, there still exist light burrs in the large

mpulses location in Fig. 8 (a)–(c). It indicates that there are some

esidual stripes in WAFT, SLD and GSLV results, which is in ac-

ordance with Fig. 7 (b)–(d). In Fig. 8 (d), our method removes all

he large impulses, meaning that all the stripes in the image are 
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Fig. 6. Destriping results for the Terra MODIS image. (a) Original stripe image; (b) WAFT; (c) SLD; (d) GSLV; (e) proposed method. 

Fig. 7. Destriping results for the Aqua MODIS image. (a) Original stripe image; (b) WAFT; (c) SLD; (d) GSLV; (e) proposed method. 
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emoved (see Fig. 7 (e)). Furthermore, Table 2 lists the NR, MRD and

D values of real-data experiments. In particular, to avoid the in-

uence of external factors, five 10 × 10 homogeneous regions are

hosen to calculate MRD, then obtain the mean MRD. For NR and

RD indices, we can see that the proposed method achieves the

etter performances. As for ID index, the compared methods ob-
ain the better results, the main reason is that these methods fail

o remove stripes from original image so that retain original in-

ormation. However, comparing with other methods, the proposed

ethod can obtain better visual effect, and the ID index results are

loser to one, which demonstrates that our method is an indeed

ompetitive method. 
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Fig. 8. Pow spectrum of Fig. 7 . (a) WAFT; (b) SLD; (c) GSLV; (d) proposed method. 

Table 2 

Quantitative results on real data using NR, MRD, and ID. 

Image Index WAFT SLD GSLV Proposed 

Terra MODIS image NR 2.72 2.46 3.70 3.94 

MRD(%) 2.80 1.47 3.28 1.87 

ID 0.997 0.999 0.994 0.995 

Aqua MODIS image NR 3.31 2.99 3.47 3.59 

MRD(%) 4.88 3.66 5.25 3.46 

ID 0.998 0.999 0.996 0.991 
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4.3. Parameters analysis 

To verify the robustness of key parameters to the performance

of the proposed method, we give a sensitivity analysis for the two

regularization parameters by using simulated experiment period-

ical stripes case 2 as an example. Fig. 9 plots the curves of the

PSNR values as a function of the regularization parameters λ1 and

λ2 . From Fig. 9 (a), we can see that the PSNR values of our method

is robustness with the values of parameter λ1 in the range of

0 . 5 × 10 −3 ∼ 2 . 5 × 10 −3 . In Fig. 9 (b), the highest PSNR value is ob-

tained with parameter λ2 in the range of 0 . 3 × 10 −3 ∼ 1 × 10 −3 .

Experimental results for other images show similar observations. 

In our implementation, since all stripe component possess the

column structure property, we empirically fix as λ1 = 0 . 001 . Due

to the different dense levels of the stripe component in the test

images, we empirically set the λ2 with the range [0.001, 0.1]. For

the positive penalty parameters, we empirically fix as β1 = β2 =
β = 0 . 1 . 
3 
. Conclusion 

In this paper, we proposed a group sparsity based convex op-

imization model for remote sensing image destriping. Our model

ook full advantage of the directional and structural properties of

tripe component, and utilized the group sparsity prior to well de-

ict the structural property. The constraint of group sparsity term

as more reasonable to separate and remove stripe noise, as well

s preserved the background information of original images. Af-

er that, an efficient convex optimization solver, ADMM, was in-

roduced to solve the proposed model. In particular, the algorithm

onvergence of the proposed convex model is guaranteed by the

xisting ADMM theory. Extensive experiments provided in this pa-

er illustrated the state-of-the-art performance of the proposed

ethod. 

Nevertheless, there is still some space to improve the proposed

ethod in the future. Our model can remove stripe for horizontal

r vertical stripes efficiently, whereas for oblique stripes in geo-

eferenced image, the property of column (or row) group sparsity

oes not exist. This is a shortcoming of our group sparsity model.

n the future, we will focus on dividing groups for oblique stripes

daptively so that the improved method may overcome the men-

ioned shortcoming. 
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Fig. 9. (a) The PSNR curve as a function of parameter λ1 ; (b) the PSNR curve as a function of parameter λ2 . 
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