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Abstract: Remote sensing images have been used in many fields, such as urban planning, military,
and environment monitoring, but corruption by stripe noise limits its subsequent applications. Most
existing stripe noise removal (destriping) methods aim to directly estimate the clear images from the
stripe images without considering the intrinsic properties of stripe noise, which causes the image
structure destroyed. In this paper, we propose a new destriping method from the perspective of image
decomposition, which takes the intrinsic properties of stripe noise and image characteristics into full
consideration. The proposed method integrates the unidirectional total variation (TV) regularization,
group sparsity regularization, and TV regularization together in an image decomposition framework.
The first two terms are utilized to exploit the stripe noise properties by implementing statistical
analysis, and the TV regularization is adopted to explore the spatial piecewise smooth structure of
stripe-free image. Moreover, an efficient alternating minimization scheme is designed to solve the
proposed model. Extensive experiments on simulated and real data demonstrate that our method
outperforms several existing state-of-the-art destriping methods in terms of both quantitative and
qualitative assessments.
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1. Introduction

In recent years, remote sensing images have been used in a wide range of fields, such as
urban planning, military, and environment monitoring. In real applications, however, due to the
inconsistent responds between different detectors, photon effects, and calibration error [1], remote
sensing images are unavoidably contaminated by various types of noise, like stripe noise and Gaussian
noise. Recently, many different denosing methods which mainly aim at random noise have been
proposed for restoration of remote sensing images [2–6]. However, many images are badly degraded by
stripe noise, and the stripe noise in remote sensing images not only greatly degrades the image quality,
but also results in low accuracy in classification [7], sparse unmixing [8–10], object segmentation [11],
and target detection [12]. Therefore, destriping also has became an essential and inevitable issue before
the subsequent analysis and applications of remote sensing images.

In the past decades, many destriping methods have been proposed under different frameworks,
which can be roughly divided into three categories: digit filtering-based methods, statistics-based
methods, and optimization-based methods. Filtering-based methods suppress the stripe noise by
constructing a filter on a transformed domain, such as Fourier transform [1,13], wavelet analysis [14,15],
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and the combined domain filter [16,17]. These methods assume that the stripe noise is periodic and
can be recognized in the power spectrum. Thus, filtering-based methods can perform good results
on the periodic stripe noise. However, the filter employed to remove the stripe noise may also affect
the structural details with the same frequencies as stripes related to the useful signal, which results
in blurring or ringing artifacts of the output images. To conquer this drawback, Münch et al. [16]
proposed a Fourier and wavelet combined filter with satisfactory destriping results, which identifies
the stripe noise more precise via wavelet decomposition.

The statistics-based methods mainly rely on the statistical properties of digital number for
each sensor [18–23]. Wherein, moment matching [18,22] and histogram matching [20,21] are typical
techniques in destriping field. The moment matching supposes that the mean and standard deviation
of each sensor are consistent, while the histogram matching attempts to remove the stripe noise
by matching the histogram of an uncalibrated signal to the reference signal [20]. In summary,
statistics-based methods can obtain competitive destriping results when the scenes are homogeneous,
and the computational process is fast. However, these methods are greatly determined by the
preestablish reference moment or histogram.

Recently, some optimization-based destriping methods regard the stripe noise removal issue as
an ill-posed inverse problem [24–27]. To find a better solution, prior knowledge of the ideal image is
used to regularize the destriping problem. Introducing prior information, an estimation of the desired
image can be computed by minimizing an energy function under a constrain term. In [24], Shen and
Zhang proposed a maximum a posterior framework based on Huber-Markov regularization for both
destriping and inpainting problems. Considering stripe noise has a clear direction signature, Bouali and
Ladjal [25] developed a sophisticated unidirectional total variation (TV) model for stripe noise removal
in MODIS data. Later, many researchers have proposed some improved unidirectional TV models
by using different regularization [26–30]. Chang et al. [26] considered a combined unidirectional
TV and framelet regularization method for stripe noise removal as well as preserving more details.
Zhang et al. [27] proposed a unidirectional TV-Stokes model, which avoids excessive over-smoothing
by distinguishing stripe regions and stripe-free regions. In addition, for multispectral and hyperspectral
images destriping, researchers taken full advantage of the high spectral correlation between the images
in different bands [31–33]. In [32], the authors proposed the graph-regularizer low-rank representation
(LRR) for destriping of hyperspectral images.

Although the above mentioned methods have achieved satisfactory destriping results, they
implement the destriping by directly estimating the desired images while ignoring the characteristics
of stripe noise, which often causes damages to the image details along with the stripes. Recently, some
optimization-based methods achieve commendable destriping results from a different perspective by
estimating and separating the stripe noise from the stripe image [34,35]. However, there still existing
many drawbacks. For instance, in [34], the authors only considered the characteristics of stripe noise
and ignored the important image prior. In addition, the authors used global sparsity prior to describe
the characteristic of stripe noise, but the sparsity characteristic is disappeared when the stripes are
too dense. In [35], Chang et al. proposed stripe noise removal model from an image decomposition
perspective, which combines the image prior and the stripe prior. However, the low rank prior for the
stripe noise will be violated in real remote sensing images, such as the stripes with small fragment
cases [35]. In summary, the prior of these methods fail to apply various stripes, and it may obtain
favorable results for specified images. To improve this deficiencies, the goal of this work is to explore
stripe prior for generic stripes and achieve better stripe noise removal results.

In this paper, we construct a new prior for stripe noise by excavating the intrinsically
directional and structural features and propose a novel method for stripe noise removal by using
image decomposition framework. In this framework, the stripe image is decomposed into two
components: image component and stripe component, then the priors of these two components can
be simultaneously considered under this framework. For the stripe component prior, we explore
the directional and structural signatures by implementing statistical analysis, and the unidirectional
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TV and group sparsity regularization are used to depict the prior of stripe component. Since the TV
regularization is a very popular approach in image processing because of its effectiveness in preserving
edge information and the spatial piecewise smoothness [2,36,37], we employ TV regularization to
describe the image component prior. Finally, we establish an image decomposition framework based
optimization model to remove stripe noise, which jointly combines image component prior and stripe
component prior. Since the proposed model should optimize two components simultaneously, we
employ an alternating minimization algorithm to find the minimizer of such an objective function
efficiently. Experimental results on simulated and real data illustrate the higher performance of the
proposed method for remote sensing images destriping by comparing with other state-of-the-art
destriping methods. The main ideas and contributions of the proposed method are summarized as
follows:

• The image decomposition framework is studied and applied to the stripe noise removal of
remote sensing images. From image decomposition perspective, we construct a convex sparse
optimization model to remove various of stripes, which can simultaneously estimate the stripe
noise and underlying image.

• The directional and structural characteristics of the stripe noise are analyzed in detail via implementing
statistical analysis, and we utilize unidirectional TV and group sparsity regularization to depict them,
respectively.

• The alternating minimization algorithm is designed to solve the proposed model. Numerical
experimental results, including simulated and real experiments, demonstrate that the proposed
method outperforms the state-of-the-art results.

The rest of this paper is organized as follows: In Section 2, the image observation model and image
decomposition framework are introduced. The characteristics of image and stripe components are
analyzed in Section 3. In Section 4, the proposed model and its optimization procedure are formulated.
To verify the effectiveness and robustness of the proposed method, both the simulated and real data
experiments are described and analyzed in Section 5. Section 6 discusses the experimental results and
analyses the sensitivity of parameters. Finally, concluding remarks are in Section 7.

2. Problem Formulation and Image Decomposition Framework

In remote sensing images stripe noise removal problem, the stripe effects can be regarded as
additive noise [24,25,35], and the degradation model can be given by

f(x, y) = u(x, y) + s(x, y) + n(x, y), (1)

where for x = 1, 2, · · ·, M, y = 1, 2, · · ·, N, M and N denote the number of rows and columns of the
2-D gray-level image, respectively. Here, f(x, y), u(x, y), s(x, y), and n(x,y) stand for the pixel values of
the observed image, the ground-truth image, the additive stripe component, and the Gaussian white
noise at the location (x, y), respectively.

We use upper-case in bold letters for matrices (i.e., 2-D gray-level image), e.g., A. Mathematically,
the matrix form of (1) can be extended as [3,35]

F = U + S + N, (2)

where F, U, S, and N ∈ RM×N represent the matrix version of f(x, y), u(x, y), s(x, y), and n(x, y),
respectively. The goal of this work is to estimate the ground-truth image U and the additive stripe
component S simultaneously.

In this study, we consider the stripe image as the combination of image component and stripe
component. The problem of solving the image component U and stripe component S from (2) is an
ill-posed inverse problem. For such ill-posed inverse problem, regularization is a popular tool of
exploiting the prior knowledge about the unknown (U and S in this case).
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Based on the image decomposition model form [35], the stripe noise removal model for remote
sensing images can be formulated as

min
U,S

1
2
‖F −U − S‖2

F + λR(U) + τR(S), (3)

where ‖F −U − S‖2
F is the data-fidelity term, which denotes that the sum of image component U and

stripe component S is close to the stripe image F; R(U) and R(S) are the regularization terms, which
describe the prior information of image component and stripe component, respectively. λ and τ are
positive regularization parameters used to balance the three terms. Clearly, to accurately estimate the
image component and stripe component, the key issue now is to design appropriate regularization
terms on U and S to separate them so as to remove stripes.

3. Image and Stripes Characteristics Analysis

In this Section, we will detailedly present how to construct appropriate regularization terms for
the image component and stripe component, respectively.

3.1. TV Regularization

In past decades, regularization methods are used in many fields [38,39], and two kinds of
regularization are well known. One class is the Tikhonov-like regularization [40]: R(U) = Σj‖D(j)U‖2,
where D(j) denotes some finite difference operators. Since the Tikhonov-like regularization terms
are quadratic, it is relatively simple to minimize the objective function by solving system of linear
equations. However, Tikhonov-like regularization always make the recovering images oversmooth,
thus they fail to preserve image details and sharp edges.

TV-based is another classic kind of regularization, which was first proposed to solve the gray
image denoising by Rudin et al. [41]. Nowadays, the TV regularization is widely extended to
other fields, such as nature image restoration [42,43] and tensor completion [44]. Comparing with
Tikhonov-like regularization, TV regularization has a better ability to effectively preserve sharp edges
and promote piecewise smooth objects.

For a 2-D gray-level image U ∈ RM×N , the TV of U can be divided into: anisotropic and
isotropic [45].

‖U‖TV :=

{
Σi|(DxU)i|+ |(DyU)i|, (anisotropic);

Σi

√
(DxU)2

i + (DyU)2
i , (isotropic).

(4)

Recently, anisotropic TV based methods have been used to remote sensing images processing
and achieved comparable results, including hyperspectral images restoration [2,4,5], and sparse
unmixing [8,9]. Thus, to remove stripe noise and random noise from the observed image, we use
anisotropic TV regularization which has a wide array of applications in digital imaging as well as
preserving sharp edges to recover the clean image. Moreover, the anisotropic TV regularization is
convex and easy to be performed. In this work, we regard the horizontal direction as x-direction and
y-direction denotes the vertical direction. Therefore, the R(U) of the decomposition model (3) can be
formulated as

R(U) = λ1‖DxU‖1 + λ2‖DyU‖1, (5)

where Dx and Dy represent the linear first-order difference operator in the x-direction and y-direction,
respectively. ‖ · ‖1 represents the sum of absolute value of all elements.

3.2. The Characteristic of Stripe Noise

Different from other forms of noises, the stripe noise not only has clear direction property, but
also has obviously structure property. Therefore, we may design corresponding regularization terms
from the mentioned two perspectives.
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We can verify the two properties from visual and quantitative analysis. To avoid the influence
of randomness, we choose three different types of methods to extract the stripe component.
The filtering-based method [16] (WAFT), statistics-based method [23] (SLD) and optimization-based
method [35] (LRSID) are used to remove the stripe noise in MODIS band 33 image, and the results are
shown in Figure 1. In the meantime, the stripe component is obtained by the difference between the
observed image and image component for WAFT and SLD methods, and LRSID method estimates the
stripe component by its stripe removal model. The estimated stripe component is shown in Figure 2a–c,
and the vertical gradient of stripe component is shown in Figure 2d–f, respectively.

(a) (b) (c) (d)

Figure 1. Image component of destriping results in Terra MODIS band 33: (a) original image; (b) WAFT;
(c) SLD; and (d) LRSID.

From Figure 2d–f to see, we can find that the three gradient images can be regarded as a sparse
matrix, which indicates that the stripe component has good smoothness in vertical direction. In other
words, the `0 regularization accounts for the number of zero elements in gradient matrix so as to yield
the sparse result in vertical direction. However, the solution of the `0 regularization is a NP-hard
optimization problem, thus we use the `1-norm to approximate it. Therefore, the regularization term
R(S) of stripe component can be formulated as

R(S) = ‖DyS‖1. (6)

The analysis of the above only describes the direction property of stripe component. Furthermore,
Figure 2a–c show that the stripe component is different with random noise, and it presents special
column structure. To further explore the property of stripe component, we plot the bar chart shown
in Figure 2g–i. The horizontal axis denotes the column number, and the vertical axis stands for the
`2-norm of each column of the stripe component. From the three bar charts, we can see that there
are a few clear embossing which values are greater than others in the chart, and the values of most
vertical bars are close to zero. Moreover, the raised locations of the three bar charts are almost the
same. Combining with Figure 2a–c, we find that the raised locations of bar chart just correspond to
the stripe noise locations, and the locations where the values close to zero are regarded as stripe-free
locations. In fact, the pixel values are all zeros in stripe-free lines, so the small values can be considered
as calculation error of the models.

Here, we consider that the stripe component is constituted by stripe lines and stripe-free lines,
and each line can be viewed as a group. This is to say, since the `2-norm of a group is close to zero,
thus its elements within a group tend to be all zeros. Based on this property, the group sparse structure
is employed to constrain the solution of stripe component. It can reduce the degrees of freedom
in the solution by constraining the group sparsity structure information, thereby resulting in better
recovery ability. In [46], the authors used the mixed `2,1-regularization to denote group sparsity.
In addition, the group sparsity regularization is a powerful tool in remote sensing images processing.
In [10], the authors employed group sparsity to constrain abundance matrix, since many row of the
corresponding abundance matrix tend to be zero. In [6], the authors used group sparse nonnegative
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matrix factorization for hyperspectral image denoising. Therefore, we introduce the group sparsity
that is depicted by `2,1-norm to describe the inner structure of stripe component. Finally, the R(S)
regularization of decomposition model (3) can be written as follows

R(S) = τ1‖DyS‖1 + τ2‖S‖2,1, (7)

where ‖S‖2,1 = ∑N
i=1 ‖Si‖2, Si denotes the i-th group of S.

(a) (b) (c)
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Figure 2. Stripe component of destriping results in Terra MODIS band 33 by (a) WAFT; (b) SLD;
(c) LRSID; (d) The vertical gradient of (a); (e) the vertical gradient of (b); (f) the vertical gradient of (c).
(g) The `2-norm values for each column of (a); (h) the `2-norm values for each column of (b); (i) the
`2-norm values for each column of (c).

4. Methodology

From the perspective of image decomposition model (3), it can effectively decompose the
stripe image into image component and stripe component. For the image component, we use TV
regularization to obtain images containing piecewise smooth objects. Since the stripe component have
a clearly directional property and structural property, the gradient domain sparsity and spatial domain
group sparsity priors are employed to extract the stripe component.
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4.1. The Proposed Model

From the above analysis, we can obtain the proposed model by putting R(U) in (5) and R(S) in
(7) to the image decomposition model (3). Finally, the stripe noise removal model can be constructed
as follows

arg min
U,S

1
2
‖F −U − S‖2

F + λ1‖DxU‖1 + λ2‖DyU‖1 + τ1‖DyS‖1 + τ2‖S‖2,1, (8)

where λ1 and λ2 are positive parameters used to control the tradeoff between the data-fidelity term
and the TV terms; τ1 and τ2 are parameters to balance the data-fidelity term and regularization terms
of the stripe component.

In summary, the proposed model can simultaneously capture the image component and stripe
component information. The TV constraint can enhance the piecewise smooth and preserve sharp
edges of image component, and the stripe constrain terms can remain the directional feature and
column structural characteristic for the stripe component. The framework of the proposed method is
illustrated in Figure 3.

Input stripe image 

Image component 

Stripe component 

decomposition 

Alternating minimization 

       Stripe                                                                             

subproblem 
      Image 

subproblem 

Alternating iteration 

output 

Output image component 

Output stripe component 

The k-th iteration result The finally iteration results 

Figure 3. The framework of the proposed model.

4.2. Optimization Procedure

The goal of our decomposition model is to simultaneously optimize two components, which
can be solved by an alternating minimization algorithm. The alternating minimization means when
optimizing one variable, we should fix other variables. Therefore, the optimization problem of
model (8) can be divided into two subproblems: a subproblem of optimizing image component and a
subproblem of optimizing stripe component. As for the two subproblems, since the `1-norm terms are
nondifferentiable and inseparable, we utilize the alternating direction method of multipliers (ADMM)
algorithm [47,48] to solve them efficiently. As the alternating iterative progress, we gradually separate
the stripe component from the stripe image and obtain an image component with the spatial structure
of piecewise smoothness.
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(1) Image component optimize: Fixing stripe component S, the image component U can be updated
from the following optimization problem:

Û = arg min
U

1
2
‖F −U − S‖2

F + λ1‖DxU‖1 + λ2‖DyU‖1, (9)

Since the `1-norm is not differentiable, we make a variable substitution by introducing
two auxiliary variables X = DxU and Y = DyU. Thus, the minimization of (9) is equivalent to
the constrained problem

arg min
U,X,Y

1
2
‖F −U − S‖2

F + λ1‖X‖1 + λ2‖Y‖1

s.t. X = DxU, Y = DyU.
(10)

Next, according [47,48], the augmented Lagrange of problem (10) is

arg min
U,X,Y

1
2
‖F −U − S‖2

F + λ1‖X‖1 + λ2‖Y‖1+ < P1, X − DxU >

+ < P2, Y − DyU > +
β

2
(‖X − DxU‖2

F + ‖Y − DyU‖2
F),

(11)

where P1 and P2 denote the Lagrange multipliers, and β is the positive penalty parameter. Therefore,
the optimization problem (9) can be solved by following three simpler subproblems.

• X-subproblem is followed by

arg min
X

λ1‖X‖1+ < P1, X − DxU > +
β

2
‖X − DxU‖2

F. (12)

The X-subproblem problem (12) can be efficiently solved by following soft-threshold shrinkage
operator [49]

Xk+1 = shrink(DxUk −
Pk

1
β

,
λ1

β
), (13)

where
shrink(r, θ) =

r
|r| ∗max(|r| − θ, 0), (14)

and the convention 0 · 0
0 = 0 is assumed.

• Similarly, we solve the Y-subproblem as follows

arg min
Y

λ2‖Y‖1+ < P2, Y − DyU > +
β

2
‖Y − DyU‖2

F, (15)

Yk+1 = shrink(DyUk − Pk
2

β
,

λ2

β
). (16)

• The U-subproblem is described as follows

arg min
U

1
2
‖F −U − S‖2

F+ < P1, X − DxU > + < P2, Y − DyU >

+
β

2
(‖X − DxU‖2

F + ‖Y − DyU‖2
F),

(17)

which is a quadratic optimization and differentiability. Thus, by the first derivations to U, it is
equivalent to the following linear system of equation

(1 + βDT
x Dx + βDT

y Dy)Uk+1 = (F − Sk) + βDT
x (X

k+1 +
Pk

1
β
) + βDT

y (Y
k+1 +

Pk
2

β
). (18)
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Under the periodic boundary conditions for U, both DT
x Dx and DT

y Dy are block circulant matrices
with circulant blocks. For the detailed discussion, we refer the reader to [50]. Therefore, they can
diagonalization by the 2D discrete Fourier transforms. Using the convolution theorem of Fourier
transforms, we can obtain the solution of U as follows

Uk+1 = F−1
(

A
βF (Dx)∗ ◦ F (Dx) + 1 + βF (Dy)∗ ◦ F (Dy)

)
, (19)

where A = F (F − Sk) + βF (Dx)∗ ◦ F (Xk+1 +
Pk

1
β ) + βF (Dy)∗ ◦ F (Yk+1 +

Pk
2

β ), “∗” denotes
complex conjugacy, “◦” denotes component-wise multiplication, and the division is
component-wise as well, F (·) represents the fast Fourier transform and F−1(·) denotes its
inverse transform.

Finally, the Lagrange multipliers P1 and P2 are updated in each iteration as follows{
Pk+1

1 = Pk
1 + β(Xk+1 − DxUk+1),

Pk+1
2 = Pk

2 + β(Yk+1 − DyUk+1).
(20)

(2) Stripe component optimize: Fixing image component U, the stripe component S can be updated
from the following optimization problem

Ŝ = arg min
S

1
2
‖F −U − S‖2

F + τ1‖DyS‖1 + τ2‖S‖2,1. (21)

Similarly, by introducing two auxiliary variables H = DyS and W = S, the minimization of (21) is
equivalent to the following problem

arg min
S,H,W

1
2
‖F −U − S‖2

F + τ1‖H‖1 + τ2‖W‖2,1+ < Λ1, H − DyS >

+ < Λ2, W − S > +
µ

2
(‖H − DyS‖2

F + ‖W − S‖2
F),

(22)

where Λ1 and Λ2 denote the Lagrange multipliers, and µ is the positive penalty parameter. Therefore,
the minimization problem (21) can be solved by following three simpler subproblems.

• H-subproblem is given by

arg min
H

τ1‖H‖1+ < Λ1, H − DyS > +
µ

2
‖H − DyS‖2

F. (23)

Is is easy to obtain the solution by soft-threshold shrinkage

Hk+1 = shrink(DySk −
Λk

1
µ

,
τ1

µ
), (24)

• W-subproblem is described as follows

arg min
W

τ2‖W‖2,1+ < Λ2, W − S > +
µ

2
‖W − S‖2

F. (25)

Simple manipulation shows that subproblem (25) is equivalent to

arg min
W

τ2‖W‖2,1 +
µ

2
‖W − S +

Λ2

µ
‖2

F. (26)
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Let Sk − Λk
2

µ = [q1, q2, · · ·, qn], then the ith column of optimal solution of W is given as (see [51])

Wk+1(:, i) =


‖qi‖−

τ2
µ

‖qi‖
qi, if τ2

µ < ‖qi‖,
0 otherwise.

(27)

• S-subproblem is followed by

arg min
S

1
2
‖F −U − S‖2

F+ < Λ1, H − DyS > + < Λ2, W − S > +
µ

2
(‖H − DyS‖2

F + ‖W − S‖2
F). (28)

This subproblem is similarly with U-subproblem optimization, and the solution can be used FFT
as follows

Sk+1 = F−1

F (F −Uk+1 + Λ2 + µWk+1) + µF (Dy)∗ ◦ F (Hk+1 +
Λk

1
µ )

µF (Dy)∗ ◦ F (Dy) + 1 + µ

 . (29)

Finally, updating the Lagrangian multipliers{
Λk+1

1 = Λk
1 + µ(Hk+1 − DySk+1),

Λk+1
2 = Λk

2 + µ(Wk+1 − Sk+1).
(30)

From the above, we take advantage of the alternating minimization scheme to separate the
difficult optimization problem (8) into two convex subproblems: an `1-regularized (9) and an `1

combine `2,1-regularized (21) least square problem. We can see that every step of ADMM for solving
the two subproblems has a closed form solution by using the efficient soft-thresholding operator or
FFT. Moreover, the Lagrange multipliers can be updated parallelly. Thus the method can be efficiently
implemented. As for the convergence of the alternating minimization scheme, applying the results
of [52] (Theorem 4.1), we conclude that every cluster point of the solution sequence generated by
the alternating minimization algorithm is a stationary point of model (8). In detail, let {Uk, Sk}
be the sequence derived from the alternating minimization scheme. Then, {Uk, Sk} converges to a
coordinate-wise minimum {Û, Ŝ} (up to a subsequence), i.e., for any {U, S}, one has

E(Û, Ŝ) ≤ E(U, Ŝ) and E(Û, Ŝ) ≤ E(Û, S).

The {Uk, Sk} denotes the solution sequence, and {Û, Ŝ} is a cluster point. Therefore, we can
always obtain a commendable destriping result by selecting proper regularization parameters and
penalty parameters. The algorithm for solving our model (8) is summarized as Algorithm 1.

Algorithm 1 The proposed destriping algorithm

Input: Stripe image F, parameters λ1, λ2, τ1, τ2, β and µ.
1: Initialize: U1 = F, P1

1 = P1
2 = Λ1

1 = Λ1
2 = 0.

2: for k = 1 : N do
3: Image component update:
4: Solve Xk+1, Yk+1 and Uk+1 via (13), (16) and (19), respectively.
5: Update Lagrange multipliers Pk+1

1 and Pk+1
2 by (20).

6: Stripe component update:
7: Obtain Hk+1, Wk+1 and Sk+1 by solving (24), (27) and (29), respectively.
8: Update the two Lagrange multipliers Λk+1

1 and Λk+1
2 by (30).

9: end for
Output: Image component U and stripe component S.
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5. Experiment Results

To verify the effectiveness of the proposed method for remote sensing images stripe noise removal,
we employ both simulated and real data experiments and compare the experimental results with
qualitatively, quantitatively and visually. Moreover, we compare the proposed method with four
state-of-the-art destriping methods: filtering-based methods [16] (WAFT), statistics-based method [23]
(SLD), optimization-based method [34] (GSLV) and from image decomposition perspective method [35]
(LRSID) which also belongs to optimization-based methods. To highlight the destriping differences
between the five compared methods, we mark some obvious differences by red circles or squares in
the destriping images. For example, the residual stripes exist in the image, or some image details are
destroyed, or image structures are distorted problems. All experiments are run in MATLAB (R2016a)
on a desktop of 16GB RAM, Inter (R) Core (TM) i5-4590 CPU, @3.30GHz.

Parameter setting: Selecting suitable parameter is a common difficulty for many algorithms, and
tuning empirically is a popular method for determining parameter [53]. The proposed method involves
four regularization parameters λ1, λ2, τ1 and τ2, and the parameters rest with the specific stripe noise
levels. For the positive penalty parameters β and µ, we set β = µ. Although our method involve
many parameters, the parameters perform better robustness and select within a small scale. Since our
experiments involve many stripe levels, according to the different degradation levels of test images
in our experiments, we empirically set the parameters range as λ1 ∈ [0.001, 0.01], λ2 ∈ [10−5, 10−4],
τ1 ∈ [0.1, 0], τ2 ∈ [0.001, 0.01], and penalty parameters β ∈ [0.1, 1]. As to the parameters in the
four compared methods, we have tried our best to tune their parameters according to the authors’
suggestions in their paper to obtain the best results [54].

5.1. Simulated Data Experiments

In our simulated experiments, the hyperspectral image of Washington DC Mall that is available
from the website [54], Moderate Resolution Imaging Spectroradiometer (MODIS) image band 32
downloaded from on website [55] and IKONOS subimage downloaded from the website [56] are used
to assess the performance of the proposed method. To demonstrate the robustness of the proposed
method, the simulated images are degraded by three different types of stripe noise, i.e., periodic stripes,
nonperiodic stripes, and stripes with Gaussian mixed noise. Before the simulation process, the clean
images are scaled to an 8-bit for convenience. Then the synthetic stripes with intensity [0, 255] are
added into the ground-truth image based on the degradation model (2). Finally, the stripe images are
scaled into the interval [0, 1] in our experiments.

To evaluate the quality of destriping images, some qualitative and quantitative indices are
employed. The visual impact and the mean cross-track profile belong to qualitative indices. For
the quantitative indices, since the availability of ground-truth images in simulated experiments,
two objective quality indices—namely peak signal-to-noise ratio (PSNR) and structural similarity
(SSIM) [57]—are employed in our study, with higher PSNR and SSIM indicating better destriping and
reconstruction performance.

(1) Periodic stripes: In this case, one 256× 256 hyperspectral subimage is chosen to add periodic
stripes. In the degraded process, four stripe lines in every ten lines are periodically added into the
ground-truth subimage, and the initial four stripe locations are randomly selected. Moreover, the
absolute value of the stripe line pixels is 50, and the noise intensity of each stripe line is equal. Figure 4
shows the destriping results of the five methods for periodic stripes case. From Figure 4, we can see
that all of the test methods can well remove the obvious stripes. In Figure 4c,d, it is clear that some
residual stripes still exist in the image. Although GSLV method can remove the stripes as shown
in Figure 4e, the image details are destroyed, which indicates image distortion and blur problems.
Clearly, LRSID and the proposed method perform the best destriping results for removing stripes and
preserving image details.
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Figure 4. Destriping results with the simulated periodic stripes case. (a) Original hyperspectral image;
(b) degraded image with periodic stripes. Image component: (c) WAFT; (d) SLD; (e) GSLV; (f) LRSID;
(g) the proposed method. Stripe component: (h) original added stripes; (i) SLD; (j) GSLV; (k) LRSID;
(l) the proposed method; (m) mean value comparison between the stripes estimated by SLD, GSLV,
LRSID, the proposed method, and the original one (h).

Since SLD, GSLV and LRSID methods involve the stripe component estimation, we compare the
estimated stripes between the three methods and the proposed method with original stripes. Figure 4h
shows the true stripes, the estimated stripes by our method as shown in Figure 4l. It is shown that the
stripe component estimated by our method is almost the same as the added stripes. From Figure 4j,
we can find that the GSLV destroys the stripe-free regions information. Figure 4m shows the mean
value of stripe component, the horizontal axis represents the column number, and the vertical axis
denotes the mean value of each stripe component line. From Figure 4m, we can find that the GSLV
fails to precisely estimate the stripe component. Moreover, all methods create some minor errors in
stripe-free regions, but comparing with other three methods, the proposed method relatively more
closer to the original zero values. That is to say, the proposed method has the ability of preserving
stripe-free information in the destriping process.

(2) Nonperiodic stripes: To illustrate our method can be applied to nonperiodic stripes in
push-broom imaging devices, we perform the simulated experiment on ground-truth MODIS image
band 32 degraded by nonperiodic stripes. In this case, we randomly select 40% of the columns to
add stripes, and the absolute value of stripe line pixels is between the range of [0, 100]. Moreover,
the intensity value (different stripe lines are with different intensity values) of each stripe line is
randomly distributed on the image. Figure 5 shows the different destriping results for the simulated
nonperiodic stripes case. By comparing the destriping results of the five methods, it can be seen that
the proposed method obtains the best results, effectively separating and removing the stripe noise and
preserving the image details as shown in Figure 5g. Moreover, the stripe component is estimated by
our method shown in Figure 5l, which is almost the same as the added stripes shown in Figure 5h.



Remote Sens. 2017, 9, 559 13 of 29

From Figure 5c–e, there are some residual stripes still existing in the image. Although LRSID can
remove the stripe noise completely, there is some image details smoothed and lost. When comparing
the stripe component with original stripes, it is clear that the proposed method without introducing
obvious errors in stripe-free regions. It demonstrates again that the proposed method has the ability of
preserving stripe-free information in the destriping process.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
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Figure 5. Destriping results with the simulated nonperiodic stripes case. (a) Original hyperspectral
image; (b) degraded image with periodic stripes. Image component: (c) WAFT; (d) SLD; (e) GSLV; (f)
LRSID; (g) the proposed method. Stripe component: (h) original added stripes; (i) SLD; (j) GSLV; (k)
LRSID; (l) the proposed method. (m) mean value comparison between the stripes estimated by SLD,
GSLV, LRSID, the proposed method, and the original one (h).

(3) Stripes with Gaussian mixed noise: In real word, remote sensing images not only degraded
by stripe noise, but also suffer from random noise. To evaluate our method can efficiently solve this
problem, we choose noise-free IKONOS subimage to add stripes with Gaussian mixed noise. In the
degraded process, the ground-truth image first add periodic stripes with three lines per ten, and
the absolute value of the stripe line pixels is 40, then the zero-mean Gaussian noise with standard
deviation σ = 2.55 is added to the image. Finally, the noise image is scaled into the interval [0, 1].
Figure 6 displays the results of removing the mixed noise. From Figure 6c–e, we can see that WAFT,
SLD and GSLV fail to remove Gaussian noise, and some residual stripes are also existing in the image.
The result of LRSID can remove Gaussian noise, but there are some stripes existing in image as shown
in Figure 6f. Figure 6g shows the denoised result by the proposed method, we can see that our method
outperforms the comparing methods, removing all the noises and reconstructing the fine spatial
structures simultaneously. Furthermore, from Figure 6l–m, our method still precisely estimates the
true stripe component.
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Figure 6. Destriping results with the simulated mixed noise case. (a) Original hyperspectral image;
(b) degraded image with periodic stripes. Image component: (c) WAFT; (d) SLD; (e) GSLV; (f) LRSID;
(g) the proposed method. Stripe component: (h) original added stripes; (i) SLD; (j) GSLV; (k) LRSID;
(l) the proposed method; (m) mean value comparison between the stripes estimated by SLD, GSLV,
LRSID, the proposed method, and the original one (h).

(4) Qualitative assessment: To illustrate the effectiveness of the proposed method, the qualitative
index of mean cross-track profile is adopted. Figure 7 shows the column mean cross-track profile
of Figure 5 as an example. The horizontal axis denotes the column number, and the vertical axis
represents the mean digital number value of each column in Figure 7. Because of the existence of stripe
noise, there are rapid fluctuations in Figure 7a. After destriping by the five methods, the fluctuations
are mainly suppressed. Comparing with original image mean cross-track profile, we can find that
WAFT, SLD, GSLV and LRSID methods fail to reconstruct the original image shown in Figure 7b–e.
It illustrates that the destriping images estimated by the four methods are existing some residual
stripes or distorted. In contrast, as displayed in Figure 7f, it can be observed that the profile produced
by the proposed method performs best and just hold the same curve with the original image profile.
This is in accordance with the visual impact shown in Figure 5, and the column mean cross-track
profile results for other simulated experiments case can obtain similar observations.

(5) Quantitative assessment: To further demonstrate the robustness of the proposed method, we
also perform the experiments with different degradation degrees for the stripe noise. Tables 1 and 2
present the quantitative indices PSNR and SSIM results for the five destriping methods in simulated
stripe image experiments, respectively. Moreover, to illustrate our method can remove stripes with
Gaussian mixed noise, Table 3 shows the PSNR and SSIM values for different mixed noise types in
simulated experiments. The parameter r in Tables 1–3 means the proportion of stripe lines within
the image, and the intensity parameter represents the mean absolute value of the stripe lines. The
parameter σ in Table 3 represents zero-mean with standard deviation σ Gaussian noise. It is worth
noting that intensity = 0–100 illustrates that the degradation levels of different stripe lines is different,
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which makes the situation more complicated. The highest PSNR and SSIM values are highlighted in
bold. From Tables 1 and 2, it can be observed that the proposed method achieves the best PSNR and
SSIM values in almost all simulated experiments than those of the comparing four destriping methods,
further indicating that the proposed method outperforms the other four state-of-the-art methods in
destriping. What is more, the IKONOS image degraded by stripe noise and Gaussian noise as shown
in Table 3. From the table, we can find that the proposed method can still obtain the best results, which
shows the effectiveness of the proposed method for removing the mixed noise. From above, the results
of quantitative assessment are consistent with the visual impact.
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Figure 7. Column mean cross-track profiles of Figure 5. (a) Striped image; (b) WAFT; (c) SLD; (d) GSLV;
(e) LRSID; (f) the proposed method.

5.2. Real Data Experiments

In this section, six real-world test data sets are used in our experiments to further test the
performance of the proposed method. The six data sets include: three periodic stripe images of
cross-track-based imaging systems and three nonperiodic stripe images of push-broom-based imaging
systems. The stripe images are chosen from MODIS image which can be downloaded online [55], and
Hyperion image can be available from the website [58]. Before the destriping process, the gray values
of each stripe image are scaled into the interval [0, 1].

(1) Nonperiodic stripes: It is shown that the data in Figures 8a–10a are degraded by nonperiodic
stripes. In particular, Figure 9a is highly contaminated by stripe noise. Figures 8–10 show the destriping
results of WAFT, SLD, GSLV, LRSID, and the proposed method for three nonperiodic stripe images.
From the results, we can see that SLD method cannot remove noticeable stripes. The stripes in SLD
destriping results, such as Figures 8c and 10c, are significant. Figure 9c shows that SLD can remove
most stripes, the main reason is that it assumes the rank-1 model for the stripes. However, this
assumption is false for Figures 8a and 10a. WAFT and GSLV methods can remove the most stripes and
improve the visual impact of image. Nonetheless, some residual stripes still exist in the images. In
Figures 8–10e, it can be seen that LRSID method can effectively remove stripes and obtain satisfactory
destriping results, but it also creates oversmoothing effect in Figure 9e. In comparison with the four
methods, the proposed method can completely suppress the stripes and achieve a best visual quality
while still well preserving the detailed information in the images.
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Table 1. PSNR (dB) results of the test methods for different stripe noise types

Image Method
r = 0.2 r = 0.4 r = 0.6 r = 0.8

Intensity Intensity Intensity Intensity
10 50 100 0–100 10 50 100 0–100 10 50 100 0–100 10 50 100 0–100

Hyperspectral
periodic
stripes

Degrade 35.22 21.24 15.22 20.82 32.21 18.23 12.21 17.40 30.45 16.47 10.45 15.46 29.20 15.22 9.20 14.27
WAFT 41.91 37.69 37.69 30.83 38.20 32.94 32.89 27.53 33.12 32.65 32.11 25.53 35.37 32.70 32.22 24.89
SLD 41.73 38.82 34.87 35.44 39.66 37.61 34.77 33.94 38.84 34.49 33.84 31.73 39.11 34.51 33.84 28.86

GSLV 35.24 29.86 31.52 29.58 32.23 30.31 31.43 29.98 31.51 30.17 31.17 29.68 31.29 31.46 31.60 27.91
LRSID 40.40 37.00 35.78 34.69 39.43 36.42 34.96 32.17 37.81 34.20 33.32 30.17 38.14 35.12 33.57 27.95

Proposed 45.02 44.66 42.29 45.66 42.79 38.34 36.54 38.90 39.74 35.94 35.60 35.42 40.33 36.17 35.25 33.73

Hyperspectral
nonperiodic

stripes

Degrade 35.14 21.16 15.14 20.12 32.13 18.15 12.13 6.57 30.34 16.36 10.34 15.42 29.10 15.12 9.10 14.07
WAFT 37.91 28.23 24.42 27.26 35.63 26.62 24.50 25.86 34.43 25.60 24.42 25.02 33.78 25.43 24.16 25.31
SLD 39.79 32.33 28.61 31.99 38.34 30.77 26.17 29.77 36.80 29.52 24.58 29.49 37.08 29.68 25.12 29.98

GSLV 35.15 29.20 27.04 28.12 32.13 28.70 24.86 28.03 30.35 29.21 24.07 28.04 31.69 30.06 23.95 28.79
LRSID 39.25 31.33 27.39 30.52 38.21 29.39 24.73 28.51 36.26 28.46 23.76 28.18 36.42 28.56 24.09 29.07

Proposed 42.52 41.43 38.78 39.89 40.79 35.37 31.81 33.30 37.03 30.45 26.54 32.91 36.98 29.76 25.94 31.61

MODIS
periodic
stripes

Degrade 35.12 21.14 15.12 20.27 32.11 18.13 12.11 17.18 30.35 16.37 10.35 14.98 29.10 15.12 9.10 14.11
WAFT 49.33 45.43 41.55 37.18 44.97 42.50 38.80 35.37 49.22 44.94 36.08 29.98 49.66 48.80 45.42 31.65
SLD 51.90 46.42 41.11 38.33 50.47 41.53 38.81 33.40 51.22 43.24 39.56 31.25 52.20 49.88 41.64 32.92

GSLV 42.55 38.97 38.96 38.48 42.37 37.92 37.75 36.83 38.01 37.64 37.46 32.31 39.93 40.29 39.93 32.47
LRSID 49.70 47.02 46.72 39.50 49.33 44.48 41.83 35.65 49.32 45.20 38.90 32.05 49.64 47.76 48.12 33.97

Proposed 51.28 47.66 47.76 45.94 48.10 45.11 44.06 43.91 48.35 42.70 40.42 42.71 52.31 51.13 50.53 40.99

MODIS
nonperiodic

stripes

Degrade 35.12 21.14 15.12 19.79 32.11 18.13 12.11 17.68 30.35 16.37 10.35 15.18 29.10 15.12 9.10 14.20
WAFT 44.46 35.40 31.52 36.39 42.83 34.65 31.64 34.22 41.04 31.17 28.25 31.46 38.20 30.52 27.68 30.30
SLD 46.81 39.40 34.36 39.26 45.69 35.25 30.82 35.03 43.25 33.70 27.75 32.56 40.42 31.07 25.22 31.31

GSLV 39.52 38.35 33.22 38.30 39.34 35.73 32.21 35.71 39.48 33.22 26.38 31.73 39.34 30.17 21.83 29.68
LRSID 45.11 38.28 35.31 38.20 43.98 35.13 30.74 35.12 41.94 33.95 27.80 32.45 39.76 31.39 23.23 31.58

Proposed 49.66 45.84 43.00 42.88 45.02 43.60 39.56 44.77 41.44 35.45 35.20 38.30 39.98 34.27 30.89 35.48
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Table 2. SSIM results of the test methods for different stripe noise types.

Image Method
r = 0.2 r = 0.4 r = 0.6 r = 0.8

Intensity Intensity Intensity Intensity
10 50 100 0–100 10 50 100 0–100 10 50 100 0–100 10 50 100 0–100

Hyperspectral
periodic
stripes

Degrade 0.961 0.646 0.422 0.667 0.926 0.458 0.216 0.464 0.904 0.348 0.113 0.366 0.867 0.280 0.088 0.292
WAFT 0.992 0.985 0.985 0.955 0.980 0.964 0.963 0.936 0.957 0.963 0.962 0.927 0.973 0.963 0.962 0.911
SLD 0.993 0.992 0.989 0.987 0.988 0.989 0.988 0.987 0.993 0.988 0.986 0.984 0.993 0.988 0.987 0.977

GSLV 0.961 0.960 0.966 0.964 0.926 0.975 0.978 0.971 0.974 0.977 0.978 0.973 0.976 0.980 0.979 0.967
LRSID 0.993 0.991 0.988 0.986 0.992 0.989 0.983 0.972 0.988 0.981 0.981 0.966 0.990 0.985 0.982 0.958

Proposed 0.997 0.997 0.995 0.997 0.997 0.994 0.990 0.992 0.994 0.989 0.987 0.987 0.994 0.990 0.985 0.980

Hyperspectral
nonperiodic

stripes

Degrade 0.964 0.667 0.443 0.682 0.935 0.487 0.230 0.467 0.908 0.369 0.126 0.368 0.875 0.294 0.081 0.286
WAFT 0.985 0.945 0.910 0.936 0.976 0.936 0.910 0.923 0.974 0.922 0.907 0.914 0.968 0.922 0.909 0.921
SLD 0.992 0.986 0.975 0.985 0.994 0.984 0.968 0.982 0.992 0.978 0.950 0.977 0.992 0.980 0.950 0.981

GSLV 0.964 0.966 0.954 0.964 0.935 0.971 0.950 0.967 0.908 0.971 0.930 0.963 0.976 0.976 0.918 0.965
LRSID 0.993 0.981 0.957 0.969 0.992 0.968 0.944 0.965 0.989 0.961 0.916 0.958 0.988 0.959 0.921 0.961

Proposed 0.997 0.996 0.986 0.994 0.996 0.992 0.985 0.990 0.993 0.971 0.956 0.980 0.992 0.974 0.945 0.978

MODIS
periodic
stripes

Degrade 0.902 0.329 0.130 0.356 0.826 0.213 0.076 0.235 0.763 0.163 0.055 0.165 0.903 0.326 0.127 0.302
WAFT 0.997 0.993 0.992 0.982 0.993 0.993 0.991 0.984 0.996 0.995 0.964 0.979 0.997 0.997 0.997 0.977
SLD 0.998 0.994 0.982 0.986 0.998 0.979 0.977 0.949 0.998 0.979 0.984 0.986 0.998 0.998 0.997 0.989

GSLV 0.997 0.991 0.991 0.993 0.997 0.996 0.996 0.994 0.997 0.998 0.996 0.992 0.996 0.996 0.995 0.969
LRSID 0.998 0.996 0.995 0.989 0.998 0.989 0.980 0.994 0.998 0.992 0.981 0.989 0.998 0.998 0.998 0.989

Proposed 0.999 0.998 0.998 0.998 0.998 0.998 0.997 0.996 0.998 0.998 0.995 0.995 0.999 0.999 0.999 0.993

MODIS
nonperiodic

stripes

Degrade 0.919 0.410 0.189 0.398 0.838 0.256 0.099 0.249 0.813 0.227 0.083 0.183 0.798 0.210 0.074 0.182
WAFT 0.994 0.985 0.980 0.986 0.992 0.982 0.978 0.983 0.989 0.977 0.972 0.979 0.987 0.974 0.970 0.975
SLD 0.997 0.994 0.988 0.993 0.996 0.994 0.986 0.995 0.996 0.993 0.978 0.992 0.996 0.986 0.956 0.986

GSLV 0.993 0.993 0.987 0.993 0.994 0.994 0.936 0.993 0.996 0.992 0.925 0.988 0.997 0.985 0.830 0.983
LRSID 0.997 0.993 0.988 0.992 0.996 0.995 0.989 0.994 0.995 0.990 0.974 0.989 0.994 0.987 0.910 0.987

Proposed 0.999 0.995 0.994 0.994 0.997 0.996 0.991 0.996 0.995 0.991 0.989 0.989 0.995 0.990 0.980 0.989
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Table 3. PSNR (dB) and SSIM results of the test methods for different stripes with Gaussian mixed noise types.

Image Methods
r = 0.3, intensity = 40 r = 0.5, intensity = [0, 50] r = 0.7, intensity = [50, 100]

σ = 2.55 σ = 5.1 σ = 2.55 σ = 5.1 σ = 2.55 σ = 5.1
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

IKONOS
periodic stripes

Degrade 21.27 0.480 21.10 0.471 22.13 0.541 21.92 0.527 12.23 0.154 12.21 0.154
WAFT 34.21 0.962 31.70 0.894 33.28 0.959 31.15 0.892 29.74 0.939 28.68 0.874
SLD 33.95 0.958 31.42 0.889 34.16 0.964 31.54 0.896 28.26 0.920 27.32 0.853

GSLV 32.68 0.961 30.88 0.894 32.36 0.951 30.24 0.884 31.55 0.960 30.48 0.890
LRSID 33.76 0.965 32.63 0.943 34.60 0.967 33.21 0.945 29.39 0.949 28.87 0.927

Proposed 38.81 0.971 35.68 0.947 38.54 0.971 35.57 0.948 37.27 0.968 34.91 0.945

IKONOS
nonperiodic stripes

Degrade 21.28 0.527 21.11 0.514 22.69 0.585 22.46 0.566 12.03 0.152 12.01 0.152
WAFT 31.14 0.949 29.71 0.884 34.92 0.961 32.07 0.894 23.95 0.916 23.65 0.854
SLD 32.16 0.954 30.13 0.885 34.97 0.962 30.34 0.889 26.82 0.945 25.96 0.877

GSLV 34.62 0.964 31.69 0.896 35.63 0.966 32.47 0.898 26.46 0.942 25.56 0.874
LRSID 34.75 0.965 33.25 0.943 36.56 0.969 34.26 0.945 26.76 0.828 26.56 0.819

Proposed 38.05 0.970 35.23 0.947 38.37 0.970 35.45 0.947 28.02 0.940 26.98 0.926
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Figure 8. Destriping results of nonperiodic stripes in Terra MODIS band 34. (a) Original image;
(b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 9. Destriping results of nonperiodic stripes in Hyperion band 211. (a) Original image; (b) WAFT;
(c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.

(2) Periodic stripes: Figures 11–13 present the destriping results for the three periodic stripe
images. The stripes are still obvious in Figures 12 and 13c, which indicates that SLD method is not
robust because favorable results are only obtained for specified images. WAFT method can remove
noticeable stripes, but some residual stripes still exist in the image. Especially, WAFT, SLD, GSLV
and LRSID methods fail to remove the stripes in the dark regions, and the burr-like stripes are still
remained in this regions shown in Figure 12b–e. In contrast, the proposed method can completely
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remove stripes with few artifacts as shown in Figure 12f. In addition, Figure 14 shows the zoomed
images for the red square regions in Figure 13, it can be clearly observed that the comparative methods
hard to remove the stripes, and residual stripes are remained in the zoomed images. On the contrary,
the proposed method can effectively remove stripes and preserve the detail structures in Figure 14f.
In general, the results shown in Figures 11–14f demonstrate that the proposed method outperforms
the other four destriping methods, completely removing the stripes and effectively remaining the
image details.

(a) (b) (c)

(d) (e) (f)

Figure 10. Destriping results of nonperiodic stripes in Terra MODIS band 33. (a) Original image;
(b) WAFT; (c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 11. Destriping results of periodic stripes in Terra MODIS band 30. (a) Original image; (b) WAFT;
(c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 12. Destriping results of periodic stripes in Aqua MODIS band 5. (a) Original image; (b) WAFT;
(c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.

(a) (b) (c)

(d) (e) (f)

Figure 13. Destriping results of periodic stripes in Aqua MODIS band 30. (a) Original image; (b) WAFT;
(c) SLD; (d) GSLV; (e) LRSID; (f) the proposed method.

(3) Quantitative and qualitative assessments: To illustrate the effectiveness of the proposed
method for real data, we give the quantitative and qualitative analysis. For the quantitative evaluation,
since without the ground-truth images as reference, we choose no-reference evaluation indices noise
reduction (NR) [24,25,32] and mean relative deviation (MRD) [24,32] to evaluate the performance of
the proposed method. NR is used to evaluate the ratio of stripe noise reduction in the frequency
domain , and MRD is employed to assess the performance of preserving the original healthy pixel in
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stripe-free regions. In particular, to avoid the influence of external factors, five 10× 10 homogeneous
regions are randomly chosen to calculate MRD, then obtain the mean MRD. Note that the larger values
of NR and lower MRD mean the better quantitative results. The qualitative assessments include the
mean cross-track profile and power spectrum.

(a) (b) (c)

(d) (e) (f)

Figure 14. Zoomed results of Figure 13. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID;
(f) the proposed method.

The NR and MRD evaluation results are shown in Table 4. It is worth noting that the proposed
method always obtains the highest NR values, except in the case of Hyperion band 211. Although
LRSID obtains higher NR values than the proposed method, it pays oversmoothing effect shown in
Figure 9e. As for MRD index, both SLD and the proposed method achieve quite satisfactory results, but
SLD fails to remove stripe noise completely. Overall, the quantitative results of the proposed method
are consistent for the visual performance. Moreover, comparing with other methods, the proposed
method not only exhibits better destriping results, but also has the more excellent ability of preserving
image structure information.

Figures 15 and 16 display the mean cross-track profiles of Terra MODIS band 34 and Hyperion
band 211 as example, respectively. The rapid fluctuations in Figures 15a and 16a illustrate the existence
of stripes in original images. Taking Figure 15 as an example, it still can be seen that the curves show
some mild fluctuations in Figure 15b–e, due to the destiping results obtained by WAFT, SLD and GSLV
are still existing some residual stripes. Comparing with the results of WAFT, SLD and GSLV, LRSID
and the proposed method provide smoother curves, which suggests that the stripes are completely
removed as shown in Figure 8e–f.

Figures 17 and 18 show the power spectrum of Aqua MODIS band 5 and Aqua MODIS band
30 shown in Figures 12 and 13 as example, respectively. The horizontal axis denotes the normalized
frequency while the vertical axis represents the mean power spectrum of all rows in the image.
For better visualization, very high spectral magnitudes are not plotted. Due to exist detector-to-detector
stripe noise, the impulses are clearly located at frequencies of 1/10, 2/10, 3/10, 4/10, and 5/10 cycles
shown in Figures 17a and 18a. After destriping by the five methods, the large impulses are strongly
reduced. In Figures 17c and 18c, light impulses that still exist due to the destriping results via SLD
can be seen many obvious stripes in the images. Although WAFT, GSLV, and LRSID can completely
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reduce the large impulses, some residual stripes still exist in their results. In Figures 17f and 18f, our
method removes all the large impulses, meaning that all the stripes are perfectly removed in the image
(see Figures 12f and 13f).

Table 4. Quantitative indices NR and MRD results of the test methods for real experiments.

Image Index WAFT SLD GSLV LRSID Proposed

Terra MODIS band 34 NR 1.18 1.14 1.28 1.66 1.70
MRD (%) 1.82 1.56 4.00 2.29 1.97

Hyperion band 211 NR 3.69 3.45 3.97 4.65 4.00
MRD (%) 4.93 4.14 9.22 4.16 3.90

Terra MODIS band 33 NR 1.17 1.21 1.49 1.74 1.97
MRD (%) 1.15 1.21 2.21 1.28 1.44

Terra MODIS band 30 NR 3.04 3.02 3.19 3.87 3.97
MRD (%) 2.44 2.25 2.09 2.73 2.07

Aqua MODIS band 5 NR 1.90 1.06 1.79 2.66 3.17
MRD (%) 1.44 1.06 6.24 2.22 1.85

Aqua MODIS band 30 NR 7.64 4.85 7.84 8.27 8.92
MRD (%) 3.61 3.43 4.14 3.23 2.63
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Figure 15. Mean cross-track profiles of Figure 8. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV;
(e) LRSID; (f) the proposed method.
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Figure 16. Mean cross-track profiles of Figure 9. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV;
(e) LRSID; (f) the proposed method.
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Figure 17. Pow spectrums of Figure 12. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID;
(f) the proposed method.
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Figure 18. Pow spectrums of Figure 13. (a) Original image; (b) WAFT; (c) SLD; (d) GSLV; (e) LRSID;
(f) the proposed method.

6. Discussion

6.1. Experimental Results Analysis

This paper proposes a new convex optimization model for remote sensing images stripe noise
removal. The author’s attention is focused on improving a methodology that is applicable to various
stripe noise removal problem and can enhance the ability for removing stripes. The novelty of the
proposed method consists in its high general versatility.

The experiments on three different types of stripe noise problems which involve different
degradation degrees to show the potential of the proposed method for various destriping tasks.
The high general versatility of the proposed method is achieved based on the image decomposition
framework which can simultaneously consider the stripe noise and image priors.



Remote Sens. 2017, 9, 559 25 of 29

From Tables 1–3, it can be clearly observed that the destriping performances of GSLV are far from
satisfactory, as this destriping model assumes that the stripes noise satisfies sparse distribution, and
it can not handle the structural feature of stripes noise and consider the spatial piecewise smooth
structure of image component. For SLD and LRSID, they can obtain impressive destriping results,
since SLD assumes the rank-1 structure model for the stripes, and LRSID enforces the low-rank prior
on the structure of stripe noise. Moreover, we add the rank-1 stripes to the ground-truth images in
simulated experiments, which can satisfy the condition for SLD and LRSID. WAFT method can achieve
acceptable destriping results, since it can truncate stripe information more accurately in a transformed
domain. Specifically, the results in Tables 1–3 show that the proposed method achieves the best PSNR
and SSIM values in almost all experiments than those of the comparing methods. The reason is that
the proposed method not only catches the structural characteristic, but also considers the directional
feature of stripe noise.

Although SLD and LRSID obtain impressive destriping results in simulated experiments, they fail
to apply various stripe noise removal problem in real-world stripe images. Figures 8–18 and Table 4
show the qualitative and quantitative assessments for various real-world striping data. For most
real remote sensing images, the stripe noise rank-1 assumption will be violated. Therefore, SLD can
not remove the stripe noise in real data shown in Figures 8–13c, which indicates that SLD method
is not applicable to various stripe noise. LRSID effectively improves the destriping performance in
most real data by utilizing the TV regularization to preserve the local details and low-rank prior to
depict the structure of stripe noise. However, taking Figure 12 as an example, since there are dark
fragments in the image, thus the low-rank prior fail to satisfy, which results in unsuccessful stripe
noise removal result. Comparing with the four methods, the proposed method further improves the
destriping performance by exploiting the directional and structural characteristics for the stripe noise
and preserves the local details by incorporating the spatial piecewise smooth structure for the clear
image. For example, in Aqua MODIS band 30 experiment, it can be seen that the compared methods
fail to remove the stripe noise in the zoomed images shown in Figure 14, but the proposed method can
effectively remove stripes and preserve the detail structures in Figure 14f.

In summary, from the extensive experiments to see, the proposed method can apply to various
stripe noise removal problems. The main reason is that the image decomposition framework is studied
and applied to stripe noise removal, which can simultaneously consider the stripe noise and image
priors and precisely estimate them. Moreover, the TV regularization is used to explore the spatial
piecewise smooth structure of clear image, and the unidirectional TV regularization and group sparsity
regularization are introduced to depict the directional and structural characteristics, respectively.
Although LRSID also removes stripe noise from image decomposition perspective, the low-rank prior
fails to guarantee in real-world, and without considering the directional characteristic for stripe noise.

6.2. Analysis of the Parameters

There are four regularization parameters involved in our model (8): λ1, λ2, τ1, and τ2.
The parameters rest with the specific stripe noise levels, and selecting suitable parameters is a common
difficulty for many algorithms. Tuning empirically is a popular way for determining parameters.
To evaluate and analyze the impact and optimal values of these parameters, we employ simulated
Figure 5 experiment as an example and use the PSNR values as the evaluation measure. The best
technique to select the optimal values of these four parameters is to find the global optimal value of
PSNR in the four-dimensional parameter space. However, this will unavoidably need a lot of time and
computation. To overcome this difficulty, we use a greedy strategy to select the parameters values one
by one. This method may obtain a local optimum, but it can achieve favorable destriping performance,
as shown in above experiment results.

(1) λ1 and λ2: Figure 19 plots the experimental results of PSNR values as the function of the
regularization parameters λ1 and λ2. From Figure 19a, it can be observed that PSNR performs obvious
improvement when λ1 is increased from 0 to 0.003. Moreover, we also observe that PSNR appears a
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slight reduction when λ1 further increasing. In general, the highest PSNR values is achieved with λ1

in 0.003 nearby. Figure 19b presents the relationship between PSNR and the parameter λ2, it is shown
that PSNR exhibits quite robustness with different values of λ2. Therefore, we can conclude that the
proposed method is robust with λ2 and a acceptable range of λ1. In our implementation, since there
are extensive experiments in this paper, and the different degradation degrees of stripe images in our
experiments, we empirically set the parameter with the range [0.001, 0.01] for λ1 and λ2 in the range of
[10−5, 10−4] for all the experiments.

(2) τ1 and τ2: The relationship between PSNR and the parameters τ1 and τ2 are depicted in
Figure 20a–b, respectively. From Figure 20a, it is clearly seen that PSNR is rather stable with
parameter τ1 in the range of 0.1 ∼ 1. Relatively speaking, the parameter τ1 value is lager than
other parameters. This is mainly because that the directional property of the stripe component is
significantly. In Figure 20b, it can be observed that the performance of the proposed method achieves
the best for τ2 = 0.015, and it is insensitive when τ2 in the range of 0.005∼0.02. From the evaluation
results above, we empirically set the parameter ranging as τ1 ∈ [0.1, 1], and τ2 ∈ [0.001, 0.01] in this
paper.

0 0.004 0.008 0.012 0.016 0.02
λ

1

10

15

20

25

30

35

40

45

50

P
S

N
R

0 0.5 1 1.5 2 2.5 3
λ

2 ×10-3

38

39

40

41

42

43

44

45

46
P

S
N

R

(a) (b)

Figure 19. The PSNR curves as function of the regularization parameters. (a) The relationship between
PSNR and the parameter λ1 (with λ2 = 10−5, τ1 = 0.1, τ2 = 0.01); (b) the relationship between PSNR
and the parameter λ2 (with λ1 = 0.005, τ1 = 0.1, τ2 = 0.01).
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Figure 20. The PSNR curves as function of the regularization parameters. (a) Relationship between
PSNR and the parameter τ1 (with λ1 = 0.005, λ2 = 10−5, τ2 = 0.01); (b) relationship between PSNR
and the parameter τ2 (with λ1 = 0.005, λ2 = 10−5, τ1 = 0.1).

7. Conclusions

In this paper, we have proposed an image decomposition framework based optimization model
for remote sensing images stripe noise removal. Different from most existing destriping methods,
the image component and stripe component were simultaneously estimated in our work. In the
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proposed model, the image prior and stripe prior were integrated into a decomposition framework and
complement each other, and the image component and stripe component can be solved alternately and
iteratively. The TV regularization was employed to preserve the local details without stripe component
and further remove the Gaussian noise, by exploiting the spatial structure information. Meanwhile,
the unidirectional TV and group sparsity regularizes were utilized to constrain stripe component,
which can effectively separate the precise stripe component from image component, by exploring
the directional and structural characteristics. Both objective quantitative and subjective qualitative
evaluations, including PSNR, SSIM, NR, MRD, the visual inspection, the mean cross-track profile, and
the power spectrum, of the experiments have demonstrated that the proposed method achieved better
destriping performance than state-of-the-art destriping methods, as well as preserving fine features of
the images.

The results show that the proposed method is very competitive, but there are several aspects that
could be improved. For instance, the method could be further improved by adaptively determining
the regularization parameters. This requires further improvement in our future studies. Moreover,
neural network based methods are popular and effective in image processing, such as image denoising
and image super-resolution. Our future work will consider the neural network based methods for
stripe noise removal of remote sensing images.
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