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Destriping of Multispectral Remote Sensing Image
Using Low-Rank Tensor Decomposition

Yong Chen , Ting-Zhu Huang , and Xi-Le Zhao

Abstract—Multispectral image (MSI) destriping is a challenging
topic and has been attracting much research attention in remote
sensing area due to its importance in improving the image quali-
ties and subsequent applications. The existing destriping methods
mainly focus on matrix-based modeling representation, which fails
to fully discover the correlation of the stripe component in both
spatial dimensions. In this paper, we propose a novel low-rank
tensor decomposition framework based MSI destriping method
by decomposing the striped image into the image component and
stripe component. Specifically, for the image component, we use the
anisotropic spatial unidirectional total variation (TV) and spectral
TV regularization to enhance the piecewise smoothness in both spa-
tial and spectral domains. Moreover, for the stripe component, we
adopt tensor Tucker decomposition and �2 ,1 -norm regularization
to model the spatial correlation and group sparsity characteris-
tic among all bands, respectively. An efficient algorithm using the
augmented Lagrange multiplier method is designed to solve the
proposed optimization model. Experiments under various cases
of simulated data and real-world data demonstrate the effective-
ness of the proposed model over the existing single-band and MSI
destriping methods in terms of the qualitative and quantitative.

Index Terms—Augmented Lagrange multiplier (ALM), destrip-
ing, low-rank tensor decomposition (LRTD), multispectral image
(MSI), Tucker decomposition.

I. INTRODUCTION

W ITH the development of remote sensing technologies,
multispectral image (MSI) normally consists of dozens

or even hundreds of spectral band images in remote sensing.
Due to the wealth spatial and spectral information of MSI in
the real scene, MSI has attracted attention and is very useful for
many practical applications, such as environmental monitoring,
urban planning, and military surveillance. However, multispec-
tral imaging sensor inevitably generates some stripe noises into
the collected MSI data during the imaging process. There are
mainly two different types of remote sensing imaging system
push-broom and cross-track imaging devices that are contam-
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inated with stripes. The main reasons for creating stripes are
the inconsistent response among different sensors and calibra-
tion error [1]. The stripe noise in MSI seriously influences the
visual quality of the imagery and poses great challenges for sub-
sequent processing, including unmixing [2], image fusion [3],
target detection [4], and classification [5]. Especially, the au-
thors in [5] used the destriped technique to enhance the image
classification for forest encroachment mapping. Therefore, to
obtain better visual quality and improve the ability of the sub-
sequent application of the MSI, it is an important preprocessing
step to remove the stripe noise (destriping) in MSI.

To date, numerous destriping methods have been proposed
for restoring the remote sensing image. They can be split into
two categories: single-band remote sensing image destriping
methods and destriping methods based on MSI or hyperspec-
tral image (HSI). The goal of this paper addresses the MSI
stripe noise removal. Compared with single-image destriping,
the application of MSI destriping is more useful, because it
can preserve the abundant spectral information in the restored
remote sensing image.

For the single-band remote sensing image destriping issue,
existing methods can be roughly separated into three cate-
gories: filtering-based methods, statistics-based methods, and
optimization-model-based methods. Filtering-based methods,
e.g., Fourier domain filter [1], [6], wavelet analysis [7], [8],
and the Fourier-wavelet combined domain filter [9], [10], are
the straightforward ideas for image destriping. These methods
depend on the hypothesis that the stripe component is the peri-
odic distribution in the image and can be isolated in the power
spectrum [1]. However, some useful signals with the same fre-
quency may be filtered out along with the stripes, which results
in obviously blurring and ringing artifacts in the restored image
[1], [8]. Statistic-based methods are also usually used for single-
image destriping due to the fact that these methods are easy to
perform, such as moment matching [11], [12] and histogram
matching [13]–[15]. These approaches concentrate on the sta-
tistical property of digital numbers for each sensor. However,
they are greatly determined by the pre-established reference
moment or histogram.

In recent, optimization-based methods have attracted much
attention and are extensively used for stripe noise removal. The
main idea of these methods is that they treat the destriping prob-
lem as an ill-posed inverse issue and construct an optimization
model by incorporating some regularization terms. Shen and
Zhang [16] first proposed a maximum a posteriori framework
and incorporated Huber–Markov model as the prior for remote
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sensing image destriping and inpainting. In [17], the authors
successively proposed a sophisticated unidirectional total vari-
ational (UTV) model for MODIS data destriping by excavating
the directional characteristic of stripes. Thereupon, to improve
the destriping performance of UTV model, many researchers
have proposed some modified UTV model by incorporating
other regularization terms [18]–[21]. In [18], the authors pro-
posed a joint model combining UTV model and framelet reg-
ularization to simultaneously remove random noise and stripe
noise. In [21], Liu et al. used the one-dimensional (1-D) sta-
tistical property to guide and add to the UTV model for stripe
noise removal. Moreover, there is a different processing angle
to remove stripe noise by estimating and separating the stripe
component from the striped image [22]–[25]. In [24], the au-
thors achieved the destriping by separating the stripe component
based on a full analysis of the various stripe properties. In our re-
cent work [22], we introduced the group sparsity prior to remove
stripes as well as precisely extracting the stripe component. In
[26] and [27], the authors treated the image and stripe com-
ponents equally and converted the image destriping task as an
image decomposition problem, which can simultaneously inte-
grate the prior knowledge of the image component and stripe
component.

The above-mentioned methods mainly focus on single-band
image destriping, which fail to take full advantage of the spec-
tral information in MSI and HSI. To track this issue, many MSI
and HSI destriping methods have been proposed to improve
the restoration performance for remote sensing image. Regard-
ing the stripe noise as the sparse noise, some HSI restoration
methods have been developed to remove the stripe noise [28]–
[30]. By using the high spectral correlation between the image
in different bands and considering the local manifold struc-
ture of the hyperspectral data space, Lu et al. [31] proposed
a graph-regularized low-rank representation (LRR) model for
destriping of HSI. In [32], the authors proposed an anisotropic
spectral-spatial total variation (TV) model for multispectral re-
mote sensing image destriping, which can promote the smooth-
ness of the image in the spatial and spectral domain. Based on
the low-rank-based single-image decomposition model [26], the
authors extended this model to MSI destriping by incorporating
the spectral information. To improve the destriping performance
of [26] in dense stripes with the high-intensity case, the low-
rank and nonlocal TV model was proposed in [33]. Cerra et al.
[34] proposed an unmixing-based method for HSI destriping
and inpainting.

Although the above of these destriping methods have obtained
a satisfactory destriping performance for multispectral remote
sensing image, they still neglect some important priors for the
destriping of MSI or HSI. The method in [32] only considered
the priors of the image component in the spatial-spectral dimen-
sion, whereas it fails to take into account the priors for the stripe
component. In [26] and [33], the authors used the band-by-band
matrix low rank prior to describe the structural characteristic for
the stripe component, but they cannot take the advantage of the
high correlation among the stripe component in different bands.
Thus, how to make full use of this high correlation to improve
the destriping performance is a noteworthy problem. Moreover,

most of the destriping methods model and characterize the im-
age component and stripe component under a matrix framework.
In fact, the MSI or HSI can be viewed as a high-order tensor
data. From tensor perspective, the tensor decomposition of the
striped image and the high correlation of the stripe component
are shown in Fig. 1. As shown in Fig. 1(b-1) and (c-1), we
can clearly see that both the spatial mode unfolding images of
the stripe component have a more intuitive structure compared
with the image component. To qualitatively characterize these
fine structures, we present the curves of the normalized singular
values of the two unfolding matrices for the image component
and stripe component, which are shown in Fig. 1(b-2) and (b-3),
and (c-2) and (c-3), respectively. From the figure to see, we can
clearly see that the drastically decaying trend of Fig. 1(c-2) and
(c-3) is more faster than Fig. 1(b-2) and (b-3), which indicates
that the strong spatial correlation of the stripe component is
more significant than the image component in different bands.

Motivated by the high correlation of the stripe component
in different bands, in this work, we propose a low-rank tensor
decomposition (LRTD) model for the task of MSI destriping.
Since the tensor Tucker decomposition approach can effectively
depict the high correlation of the tensor data [28], [35], [36], we
design it to characterize the high correlation of the stripe com-
ponent in both spatial dimensions. Compared to the previous
band-by-band matrix LRR for the stripe component, low-rank
Tucker decomposition can simultaneously encode the high cor-
relation of the stripe component in both spatial correlations.
Moreover, the stripe component also presents the group sparsity
prior in each band shown in Fig. 1(a-3), and we design �2,1
norm to track it. To preserve the local piecewise smoothness
of the image component in both spatial horizontal and spectral
directions, we adopt anisotropic spatial unidirectional TV and
spectral TV to regularize the image component. Detailed mod-
eling of our work can be found in Section III-B. To efficiently
solve the proposed model, an augmented Lagrange multiplier
(ALM) method is designed to optimize the proposed model. The
experiments on simulated data with different stripe cases and
real data demonstrate that our proposed method achieves better
destriping performance than the existing single-band and MSI
destriping approaches. The main contributions of this paper are
summarized as follows.

1) To the best of our knowledge, we are the first to model
the MSI destriping task in a LRTD framework. Compared to
the matrix-based image representation, this tensor-based rep-
resentation well preserves the high correlation of the image in
different bands.

2) The low-rank Tucker decomposition is introduced to depict
the high correlation of the stripe component in both spatial
modes, which can precisely isolate the stripe component from
the striped image.

3) We design an efficient ALM method to solve the proposed
LRTD model and perform superior destriping performance over
the existing single-band and MSI destriping methods on various
stripe degradation cases, especially when the stripe component
is very dense and is of high intensity in the image.

The remainder of this paper is organized as follows. In
Section II, we give some notations and preliminaries for the
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Fig. 1. Illustration of the image component and stripe component priors. (a) LRTD framework. (a-1) Degraded image, (a-2) image component, (a-3) stripe
component. (b-1) Mode 1 and mode 2 unfoldings of the image component (a-2), (b-2,3) distribution of normalized singular values in mode 1 and mode 2 unfoldings
of the image component. (c-1) Mode 1 and mode 2 unfoldings of the stripe component (a-3), (c-2,3) distribution of normalized singular values in mode 1 and
mode 2 unfoldings of the stripe component. (d) Derivation characteristics of the image component and degraded image. (d-1) Band 4 of (a-2), (d-2,3,4) the spatial
horizontal, spatial vertical, and spectral derivation images of (d-1), respectively. (d-5) Band 4 of (a-1), (d-6,7,8) the spatial horizontal, spatial vertical, and spectral
derivation images of (d-5), respectively.

tensor. The detailed formulation of our LRTD model and the
ALM solver are presented in Section III. In Section IV, we
present extensive experimental results on both simulated and
real data to demonstrate the effectiveness of our method, and
we then give the discussion of the proposed model. Finally, we
conclude this paper in Section V.

II. NOTATIONS AND PRELIMINARIES

A tensor can be regarded as a multi-index numerical array,
and the number of its modes or dimensions represent its order. In
this section, we first introduce some tensor related notions and
preliminaries as follows. Following [37], in this paper, we use
capitalized calligraphic letters for tensors (high-order data), e.g.,
X . Matrices (second-order data) are represented as capitalized
boldface letters, e.g., X. A vector (first-order data) is denoted
as boldface lowercase letters, e.g., x, and we denote scalars
as lowercase letters, e.g., x. An N -mode tensor is defined as
X ∈ RI1 ×I2 ×···×IN , and we denote its (i1 , i2 , . . . , iN ) element
as xi1 ,i2 ,...,iN

.
Fibers are the higher-order analogue of matrix rows and

columns. A fiber is defined by fixing every index, but one.
Third-order tensors have column, row, and tube fibers, denoted

by x:jk , xi:k , and xij : , respectively. A slice is a two-dimensional
section of a tensor, defined by fixing all, but two indices. The
horizontal, lateral, and frontal slides of a third-order tensor X ,
denoted by Xi:: , X:j : , and X::k , respectively. The mode-n ma-
tricization of a tensorX ∈ RI1 ×I2 ×···×IN is denoted by X(n) and
arranges the mode-n fibers to be the columns of the resulting
matrix [37].

The inner product of two same-dimensional tensors X and
Y is defined as 〈X ,Y〉 :=

∑
i1 ,i2 ,...,iN

xi1 ,i2 ,...,iN
· yi1 ,i2 ,...,iN

.
The corresponding norm (Frobenius norm) is defined as
‖X‖F :=

√〈X ,X〉. In addition, the �1 norm is calcu-
lated as ‖X‖1 :=

∑
i1 ,i2 ,...,iN

|xi1 ,i2 ,...,iN
|. The n-mode prod-

uct of a tensor with a matrix is calculated as (X ×n

U)i1 ,...,in −1 in + 1 ,...,iN
=

∑
in

xi1 ,i2 ,...,iN
· uj,in

. The multilin-
ear rank is defined as an array (r1 , r2 , . . . , rI ), where rn =
rank(X(n)), n = 1, 2, . . . , N . For a more detailed introduction
of tensor, please refer to [37].

III. PROPOSED METHOD

A. Problem Formulation

Assuming that the striping effects in MSI are considered to
be additive noise, then the degradation model of stripe noise
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removal can be expressed as

Y = X + S + N (1)

where Y , X , S, and N are third-order tensors representing the
degraded image, the clean image (or image component), the
stripe component, and the noise (or error) term, respectively.
The size of Y , X , S, and N is M × N × B, in which M and
N , respectively, denote the number of rows and columns of the
image in each band, and B stands for the number of bands.

The goal of this paper is to separate the image component X
and stripe component S form the degraded image Y , as shown
in Fig. 1(a). However, the issue of directly computing X and
S from Y is an ill-posed problem. For this ill-posed problem,
regularization is an effective tool to guarantee the stable solution.
Thus, the corresponding destriping objective function can be
formulated as follows:

min
X ,S

1
2
‖Y − X − S‖2

F + α1J1(X ) + α2J2(S) (2)

where the first term is the data-fidelity term; J1(X ) and J2(S)
are the regularization terms, which describe the prior informa-
tion of the image component and stripe component, respectively.
α1 and α2 are the positive regularization parameters, which is
used to balance the three terms. Therefore, to effectively separate
the image component and stripe component from the degraded
image, the key problem is that we need to exploit the prior
information for both X and S and then design corresponding
regularizers, which will be discussed in the next subsection.

B. Priors and Regularizers

In this subsection, we will introduce how to design efficient
regularizers for X and S in detail, respectively.

1) Spatial Correlation of the Stripe Component: From the
perspective of linear mixture model, it is well known that HSI
has a strong correlation in spectral dimension, based on the as-
sumption that each spectral signature can be represented by a
linear combination of few pure spectral endmembers. Since the
MSI can be regarded as a part of bands in HSI, the spectral corre-
lation also exists in MSI, which implies that the mode-3 unfold-
ing matrix X(3) can be approximated by a matrix factorization
X(3) = V3C3 , where V3 is a low-rank matrix (i.e., the col-
umn of V3 is much less than X(3)). However, the correlation is
weak in both spatial dimensions for MSI. We can measure these
properties by using an example. One 256 × 256 × 10 subim-
age from Washington DC Mall Data is shown in Fig. 1(a-2),
and the distributions of the normalized singular value of the
unfolding matrices in both spatial dimensions (i.e., mode 1 and
mode 2 directions) are shown in Fig. 1(b-2) and (b-3). From
Fig. 1(b-2) and (b-3), we can see that the singular value curves
have decaying trends, but the trend of falling to zero is very
slow. The weak spatial correlation in MSI indicates that the
matrix unfoldings X(1) and X(2) in both two spatial modes
can be approximated by two high-rank matrices, respectively.
Mathematically, X(1) = V1C1 and X(2) = V2C2 , where V1
and V2 are two high-rank matrices. Based on these priors of
the spatial-spectral correlation of the tensor data and the popu-
lar Tucker decomposition in multilinear algebra [35], [36], the

low-rank Tucker decomposition can be introduced to aggregate
the matrix factorizations above as follows:

X = C ×1 V1 ×2 V2 ×3 V3 .

However, in our work, we utilize low-rank Tucker decompo-
sition to constrain the stripe component S rather than the image
component X , the main reason is that the correlation of stripe
component in both spatial dimensions is stronger than the image
component.

We can explain this strategy using the low-rank Tucker de-
composition for stripe component from quantitatively perspec-
tive. Fig. 1(a-3) shows the simulated stripe component, which
is generated following the experiments in [26]. Then, we also
give the distributions of the normalized singular value of the
unfolding matrices for the stripe component in both spatial
dimensions, which are shown in Fig. 1(c-2) and (c-3). Com-
pared with Fig. 1(b-2) and (b-3), we can find that the singular
values distributions of mode-1 and mode-2 unfolding matrices
are falling faster than the image component. In particular, the
singular values of mode-1 unfolding matrix [see Fig. 1(c-2)]
rapidly decrease to zero with rank 1, whereas the singular val-
ues of the image component [see Fig. 1(b-2)] slowly decrease
to zero with rank close to 100. From Fig. 1(b-3) and (c-3), the
singular values also decrease to zero faster than the image com-
ponent. To sum up, compared with the image component, the
strong spatial correlation in stripe component implies that the
matrix unfoldings S(1) ∈ RM ×N B and S(2) ∈ RN ×M B in both
the spatial modes can be factorized two low-rank matrices, re-
spectively. Mathematically, S(1) = U1G1 and S(2) = U2G2 ,
where U1 ∈ RM ×r1 , U2 ∈ RN ×r2 , r1 � M and r2 � N .
Since we assume that the locations of the stripe component
are randomly distributed in each band, the weak spectral corre-
lation implies that the matrix unfolding S(3) ∈ RB×M N can be
approximated by a high-rank matrix, i.e., S(3) = U3G3 , where
U3 ∈ RB×r3 and r3 ≤ B. This phenomenon demonstrates that
using low-rank Tucker decomposition regularization to con-
strain the stripe component is more reasonable than the image
component. Therefore, the above can be formulated together as
follows:

S = G ×1 U1 ×2 U2 ×3 U3 (3)

where U1 ∈ RM ×r1 , U2 ∈ RN ×r2 , and U3 ∈ RB×r3 are the
factor matrices, which are orthogonal in columns for two spa-
tial modes and spectral mode, respectively. The tensor G ∈
Rr1 ×r2 ×r3 is named core tensor.

Compared to the band-by-band low-rank matrix modeling
regularization [26], [33], the advantages of our LRTD modeling
strategy are that it can simultaneously encode the high correla-
tion of the stripe component in both spatial correlations. Thus it
can more precisely extract the stripe component S.

2) Group Sparsity of the Stripe Component: From Fig. 1(a-3),
we can observe that the stripe component presents a special line
pattern characteristic in each band compared with other forms
of noise (such as Gaussian noise and impulse noise). In [24], the
authors used �0 norm to constrain the stripe component because
the stripe component can be considered as a sparse matrix with
a plenty of zero elements in the stripe-free locations. However,
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the sparsity prior of �0 loss assumes that the sparse elements
are randomly distributed, and it fails to consider the inner struc-
ture among these elements. Intuitively, the stripe component
consists of the stripe column and stripe-free column, and each
column can be viewed as a group. Moreover, the pixel values of
stripe-free column tend to be all zeros, and the stripe columns
are all nonzeros. Based on this property, the stripe component
can approximately be considered as being group sparsity when
the stripe noise is not heavy. To enhance the group sparsity of
the stripe component, using �2,0 norm of the stripe component
S is an ideal option since the �2,0 norm promotes the num-
ber of nonzero lines (the column fibers) of S. However, due
to the NP-hard problem of �2,0 , we settle for introducing �2,1
norm to describe the group sparse prior [22], [28]. To do this,
we finally construct the other one regularization for the stripe
component as

J2(S) = ‖S‖2,1 (4)

where ‖S‖2,1 =
∑B

k=1
∑N

j=1

√∑M
i=1(xijk)2 .

3) Piecewise Smoothness of the Image Component in Spatial-
Spectral Directions: Unlike other forms of noise, the stripe noise
usually presents special directional feature (i.e., horizontal or
vertical). In our study, we consider each stripe line as a vertical.
If the stripes are horizontal, we rotate them to make the stripe
lines vertical. To describe the special directional feature of the
stripe noise, we present the derivation images in spatial-spectral
directions for the degraded image and clean image, respectively.
The derivation images of the spatial horizontal, spatial verti-
cal, and spectral directions of these two images are shown in
Fig. 1(d-2), (d-3), and (d-4), and Fig. 1(d-6), (d-7), and (d-8),
respectively. From Fig. 1(d-2), (d-3), and (d-4) to see, the three
derivation images are very smooth and sparse, which indicates
that the image component has a piecewise smooth prior in the
spatial-spectral directions. However, due to the existence of the
stripe noise, the smoothness of the spatial horizontal deriva-
tion and spectral derivation are seriously destroyed as shown in
Fig. 1(d-6) and (d-8), whereas the spatial vertical derivation also
preserves the smooth structure. Based on these observations, it
motivates us to design a regularization, which can fully preserve
the piecewise smoothness of the image in both spatial horizontal
and spectral directions so as to remove the stripe noise from the
image component. In recent, the TV regularization is an efficient
method to preserve the piecewise smooth structure in the image
[38]–[40]. Naturally, a spatial horizontal unidirectional TV reg-
ularization and the spectral TV regularization are introduced to
promote the smooth structure. Thus, the final regularizer for the
image component is given as follows:

J1(X ) = λ1‖DxX‖1 + λ2‖DzX‖1 (5)

where Dx and Dz are the spatial horizontal and spectral differ-
ential operators, respectively. Let X (i, j, k) represent the inten-
sity at the location (i, j, k), then the differential operators are
defined by

{
DxX (i, j, k) = X (i, j + 1, k) −X (i, j, k)
DzX (i, j, k) = X (i, j, k + 1) −X (i, j, k).

C. Proposed Model

After fully exploiting the prior knowledge of the stripe com-
ponent and image component and designing the corresponding
regularizers, we now can instantiate the destriping objective
function in (2). Combining the modeling of the stripe com-
ponent in (3) and (4) and the image component in (5) into the
regularization model in (2), we can obtain the final minimization
model for solving the destriping of MSI as follows:

min
X ,S,G,U i

1
2
‖Y − X − S‖2

F + λ1‖DxX‖1 + λ2‖DzX‖1

+ λ3‖S‖2,1

s.t. S = G ×1 U1 ×2 U2 ×3 U3 , UT
i Ui = I (i = 1, 2, 3)

(6)

where λ1 , λ2 , and λ3 are three positive regularization
parameters.

It should be noted that the proposed model can effectively
use the image decomposition framework to simultaneously cap-
ture the prior information of the stripe component and image
component, and thus is expected to have a strong ability of ac-
curately separating the stripe component and image component.
More specifically, the two spatial mode correlation of all the
stripe component pixels and the certain correlations in spectral
mode can be well captured by the low-rank Tucker decomposi-
tion. Moreover, the group sparsity regularization can be used to
maintain the line pattern of the stripe component. Though when
the stripes are very heavy, it seems that this regularization is not
proper. However, the group sparsity term also can be viewed as
a role to restrain the magnitude and structure of stripes. Mean-
while, we can tune the parameters of the model to handle a scene
with heavy stripes. For the image component, the designed TV
regularization in spatial horizontal and spectral directions are
used to suppress the stripes in the spatial domain and preserve
the spectral consistency.

D. Optimization Procedure

Clearly, due to the nonconvexity of the low-rank Tucker de-
composition, the proposed model is a nonconvex optimization
problem, and then we can only expect to find a local optimal
solution. For efficiency, we develop an efficient algorithm based
on ALM method [36], [41] to optimize the proposed model in
(6). The implementation details of our optimization algorithms
are presented in the following.

By introducing three auxiliary variables, the proposed model
in (6) can be rewritten as the following equivalent problem:

min
X ,S,G,U i ,R1 ,R2 ,Q

1
2
‖Y − X − S‖2

F + λ1‖R1‖1

+ λ2‖R2‖1 + λ3‖Q‖2,1

s.t. R1 = DxX , R2 = DzX , Q = S
S = G ×1 U1 ×2 U2 ×3 U3 , UT

i Ui = I (i = 1, 2, 3). (7)
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Then, by applying the ALM method, the augmented Lagrangian
function of problem (7) is

Lβ (X ,S,G,Ui ,R1 ,R2 ,Q,Wi) =
1
2
‖Y − X − S‖2

F

+ λ1‖R1‖1 + λ2‖R2‖1 + λ3‖Q‖2,1 +
β

2

∥
∥
∥
∥R1 − DxX

+
W1

β

∥
∥
∥
∥

2

F

+
β

2

∥
∥
∥
∥R2 − DzX +

W2

β

∥
∥
∥
∥

2

F

+
β

2

∥
∥
∥
∥Q− S +

W3

β

∥
∥
∥
∥

2

F

(8)

under the Tucker decomposition constraints S = G ×1 U1 ×2
U2 ×3 U3 ,UT

i Ui = I (i = 1, 2, 3), where Wi(i = 1, 2, 3) are
the scaled Lagrange multipliers, and β is a positive penalty
parameter. It is hard to simultaneously solve all these vari-
ables, thus we can approximately and alternatively optimize the
problem (8) over one variable with the other variables fixed.
Therefore, we take advantage of the optimization algorithm to
separate the difficult optimization problem (8) into the following
easy subproblems.

1) R1 subproblem: By fixing the other variables, the opti-
mization problem R1 is given by

arg min
R1

λ1‖R1‖1 +
β

2

∥
∥
∥
∥R1 − DxX +

W1

β

∥
∥
∥
∥

2

F

which can be efficiently solved by the following soft-threshold
shrinkage operator [42]

R1 = soft

(

DxX − W1

β
,
λ1

β

)

(9)

where soft(r, θ) = sgn(r). ∗ max(|r| − θ, 0).
2) R2 subproblem: Similarly to the R1 subproblem, the R2

subproblem is also obtained by the soft-threshold shrinkage
operator, i.e.,

arg min
R2

λ2‖R2‖1 +
β

2

∥
∥
∥
∥R2 − DzX +

W2

β

∥
∥
∥
∥

2

F

R2 = soft

(

DzX − W2

β
,
λ2

β

)

. (10)

3) Q subproblem: Minimizing (8) with respect to Q can be
solved by

arg min
Q

λ3‖Q‖2,1 +
β

2

∥
∥
∥
∥Q− S +

W3

β

∥
∥
∥
∥

2

F

.

Let S − W3
β = B, then the optimal solution of column fibers of

Q is given as (see [43])

Q(:, j, k) =
⎧
⎪⎨

⎪⎩

‖B(:, j, k)‖ − λ3
β

‖B(:, j, k)‖ B(:, j, k), if
λ3

β
< ‖B(:, j, k)‖

0, otherwise.
(11)

4) S, G, and Ui subproblems: By keeping the other variables
fixed, the optimization problems of S, G, and Ui are given by:

min
UT

i U i =I,
S=G×1 U1 ×2 U2 ×3 U3

1
2
‖Y − X − S‖2

F +
β

2

∥
∥
∥
∥Q− S +

W3

β

∥
∥
∥
∥

2

F

which can be combined into the following equivalent formula:

min
UT

i U i =I

1 + β

2

∥
∥
∥
∥
∥
G ×1 U1 ×2 U2 ×3 U3

−
(Y − X ) + β(Q + W3

β )

1 + β

∥
∥
∥
∥
∥

2

F

. (12)

The variables G and Ui can be effectively solved by using the
classic HOOI algorithm [37], then we update the S subproblem
as follows:

S = G ×1 U1 ×2 U2 ×3 U3 . (13)

5) X subproblem: The X subproblem is a least-squared prob-
lem

arg min
X

1
2
‖Y − X − S‖2

F +
β

2

∥
∥
∥
∥R1 − DxX +

W1

β

∥
∥
∥
∥

2

F

+
β

2

∥
∥
∥
∥R2 − DzX +

W2

β

∥
∥
∥
∥

2

F

which is equivalent to solve the following linear system:

(I + βDT
x Dx + βDT

z Dz )X = (Y − S)

+ βDT
x

(

R1 +
W1

β

)

+ βDT
z

(

R2 +
W2

β

)

where I is the unit tensor. In this work, we consider the periodic
boundary condition for X , then DT

x Dx and DT
z Dz are block

circulant matrices with circulant blocks; thus it can be efficiently
solved by the fast Fourier transform (FFT)

X = ifftn

( A
β1 + β(|fftn(Dx)|2 + |fftn(Dz )|2)

)

(14)

where A = fftn((Y − S) + βDT
x (R1 + W1

β ) + βDT
z (R2 +

W2
β )), fftn and ifftn are the fast 3-D Fourier transform and its

inverse transform, | · |2 is the element-wise square, and the di-
vision is also performed element-wisely.

6) Multipliers updating: According the solved algorithm, the
Lagrange multipliers Wi(i = 1, 2, 3) can be updated as follows:

⎧
⎪⎨

⎪⎩

W1 = W1 + β(R1 − DxX )
W2 = W2 + β(R2 − DzX )
W3 = W3 + β(Q− S).

(15)

Combining the above solved subproblems, we have a one-step
iteration for solving the algorithm. The proposed method for the
MSI stripe noise removal can be summarized in Algorithm 1.

E. Analysis of Computational Complexity

Here, we will analyze the computational complexity of
our algorithm. The computation of Algorithm 1 involves the
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Algorithm 1: The Optimization Procedure for the Proposed
Model.
Input: The degraded image Y ∈ RM ×N ×B , the estimated

rank (r1 , r2 , r3) for Tucker decomposition, the
parameters λ1 , λ2 , λ3 , β, ε, kmax.

1: Initialize: Set X = Y , R1 = R2 = Q = S = W1 =
W2 = W2 = 0, k = 0.

2: while stopping criterion is not satisfied do
3: Update R1 and R2 using a soft-threshold shrinkage

method by (9) and (10), respectively.
4: Update Q via (11).
5: Compute G, Ui and S by (12) and (13).
6: Compute X via a linear system (14).
7: Update the three Lagrange multipliers W1 , W2 and

W3 by (15).

8: Check the convergence condition ‖X k + 1 −X k ‖F

‖X k ‖F
≤ ε

and k < kmax.
9: end while

Output: The estimations of the stripe-free MSI X and the
stripe component S.

threshold shrinkage, HOOI algorithm, and FFT operation.
The R1 , R2 , and Q subproblems are solved by threshold
shrinkage operations, thus the complexity for each subprob-
lem is O(MNB). The S, G, and Ui subproblems involve
the HOOI algorithm, which comes from computing the SVDs
and forming the tensor-matrix product. For simplicity, we de-
note r = max{r1 , r2 , r3}, then the total cost for one iteration
of HOOI is O(MNBr + (M + N + B)r4 + r6) [44]. In ad-
dition, the X subproblem is solved by FFT, which requires
O(MNB log(MNB)) operations. Thus, the total computa-
tional complexity of algorithm 1 is O(3MNB + MNBr +
(M + N + B)r4 + r6 + MNB log(MNB)).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we employ both simulated and real data ex-
periments to verify the effectiveness of the proposed method for
MSI stripe noise removal. We compare our method with three
recent state-of-the-art methods, including anisotropic spectral-
spatial TV (ASSTV) model [32], image decomposition based
band-by-band low-rank regularization and spatial-spectral TV
model (LRMID) [26], and TV regularization and group sparsity
constraint method (TVGS) [27]. The implementation codes of
ASSTV and LRMID can be directly obtained from the author’s
homepage,1 and TVGS is our recent work. For the reproduc-
tion of our research, we will publish our code in the author’s
homepage.2 In the following experiments, the parameters in
those three compared methods are manually tuned according
to the author’s rules in their paper to guarantee their possibly
good performance. For the parameters of our LRTD method, we
would like to show the detailed discussion in Section IV-C. All
of the experiments are implemented in MATLAB R2017b on a

1http://www.escience.cn/people/changyi/index.html
2https://www.researchgate.net/profile/Yong_Chen96

desktop of 16 GB RAM, Intel (R) Core (TM) i7-8700K CPU,
@3.70 GHz.

A. Simulated Data Experiments

In the simulated experiments, the Washington DC Mall,
which can be downloaded on website,3 is selected as the ground-
truth image. The original Washington DC Mall contains 191
spectral bands with 1208 × 307 pixels in each band, and we ex-
tract a subimage of size 256 × 256 × 10 in our experiment. In
our experiments, we simulate two types of stripes according to
the distribution of the stripe location in different bands. To better
the numerical calculation and visualization, the gray values of
the MSI are scaled to [0, 1] before adding stripes.

1) Locations of Stripes are Randomly Distributed in Each
Band

In this type of experiment, we choose the Washington DC
Mall subimage as the ground truth to add stripes. In remote
sensing imaging systems, there are mainly two kinds of stripe
noise in an image: Periodic stripes in cross-track imaging de-
vices and nonperiodic stripes in push-broom imaging devices.
To simulate these cases, we, respectively, consider the periodic
and nonperiodic stripes to the ground-truth image, and the loca-
tions of stripes are randomly distributed in each band. To make
the situation more complicated, the degradation levels of the
different stripe lines are also different. Both the periodic and
nonperiodic stripes are added in the following pattern based on
the degradation model (1).

Stripe noise generation: Adding stripes to an image is indeed
an open problem, since there is no unified method, thus we
can synthetic stripes following the recent stripe noise removal
literature [26]. Before adding stripes to the image, we need
to determine two indicators: the percentage of the stripe area
within the image (denote r), and the intensity (mean absolute
value of pixels) of each stripe line (denote I). The percentage
r of stripes in the set of {0.2, 0.5, 0.8, 0 − 1} are considered in
our experiment. Meanwhile, the intensity I of each stripe line
in the set of {0.2, 0.5, 0.8, 0 − 1} are added to the image. It
is worth noting that r = 0 − 1 represents that the degradation
percentage of the stripe lines is different in each band. Sim-
ilarly, I = 0 − 1 denotes that the intensity of each stripe line
is randomly distributed. For simulating periodic stripes, r × 10
stripe lines in every ten lines are periodically added into the
image and the intensity value of each stripe line equal to I . We
randomly select r ∗ N lines in the image to add stripes for simu-
lating nonperiodic stripes. Therefore, we, respectively, simulate
16 different cases for periodic and nonperiodic stripes, which
makes the situation more complicated.

Visual quality comparison: Since there are many degraded
cases in our simulated experiment, we choose one case from
the periodic stripes and nonperiodic stripe experiment for com-
parison, respectively. Moreover, because of the page limitation,
we only present one typical band of the simulated data before
and after destriping. Fig. 2 shows the results of the different de-
striping methods with the periodic stripes in case of r = 0.5 and

3https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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Fig. 2. Destriping results of band 10 for the periodic stripes case (r = 0.5 and I = 0.2). (a) Original. (b) Degraded image with periodic stripes. Destriping
results of (c) ASSTV, (d) LRMID, (e) TVGS, (f) LRTD.

Fig. 3. Magnified results of Fig. 2. (a) Original. (b) Degraded image with periodic stripes. Destriping results of (c) ASSTV, (d) LRMID, (e) TVGS, (f) LRTD.

Fig. 4. Destriping results of band 5 for the nonperiodic stripes case (r = 0.5 and I = 0.2). (a) Original. (b) Degraded image with nonperiodic stripes. Destriping
results of (c) ASSTV, (d) LRMID, (e) TVGS, (f) LRTD.

Fig. 5. Magnified results of Fig. 4. (a) Original. (b) Degraded image with nonperiodic stripes. Destriping results of (c) ASSTV, (d) LRMID, (e) TVGS, (f) LRTD.

I = 0.2. Fig. 2(a) presents the original band 10 in our selected
Washington DC Mall data. The image is seriously contaminated
by the stripe noise, as shown in Fig. 2(b). The destriping results
of the compared methods are shown in Fig. 2(c)–(f). Similarly,
the results of nonperiodic stripe case (r = 0.5 and I = 0.2) are
shown in Fig. 4. For better visual comparison, we magnify some
detailed regions cropped from the image. Figs. 3 and 5 display
the magnified results of the red box subregion in Figs. 2 and
4, respectively. From Figs. 2 to 5(c)–(e), it can be seen that
ASSTV, LRMID, and TVGS can remove all of the obvious
stripes. However, these methods fail to preserve the detailed
information, which results in image distortion, blur, and over
smoothness. For example, Fig. 3(c) and (e) shows the subregion
results of ASSTV and TVGS, respectively; it is obvious that the
trees are completely oversmoothed and blurred in the image,

and the similar observation can be observed in Fig. 5(c) and
(e). As shown in Figs. 3–5(d), LRMID also obtains the minor
distortion compared with ASSTV and TVGS. Unfortunately, it
introduces some stripe-like artifacts as shown in Fig. 5(d). From
the results of the proposed method shown in Figs. 2–5(f), it
can be clearly seen that the proposed LRTD model achieves the
best destriping reconstruction results. In particular, we can ob-
serve the superiority of LRTD from magnified results Figs. 3(f)
and 5(f), which show that the proposed LRTD can effectively
remove stripes and preserve image details and structures.

Quantitative comparison: To further evaluate the overall per-
formance of the proposed method, we give the quantitative com-
parison for all experimental cases. Since the ground-truth image
exists, three quantitative indices, i.e., the mean peak signal-to-
noise ratio (MPSNR), mean structural similarity (MSSIM) [45],
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TABLE I
QUANTITATIVE EVALUATION OF THE DIFFERENT METHODS FOR PERIODIC STRIPES UNDER DIFFERENT NOISE LEVELS ON WASHINGTON DC MALL DATA

TABLE II
QUANTITATIVE EVALUATION OF THE DIFFERENT METHODS FOR NONPERIODIC STRIPES UNDER DIFFERENT NOISE LEVELS ON WASHINGTON DC MALL DATA

and mean spectral angle mapper (MSAM) [46], are used in our
simulated experiments

MPSNR =
1
B

B∑

i=1

PSNRi

MSSIM =
1
B

B∑

i=1

SSIMi

MSAM =
1

MN

M N∑

i=1

arccos
(X i)T · (X̂ i)
‖X i‖ · ‖X̂ i‖ ,

where PSNRi and SSIMi are the PSNR and SSIM values for the
ith band, respectively. X i and X̂ i are the ith spectral signatures
of the ground-truth and destriping MSI, respectively. Especially,
the MSAM is used to measure a global performance of spectral

distortion. The large values of MPSNR and MSSIM, and smaller
MSAM indicate the better destriping results. Tables I and II
display the destriping results by the four compared methods in
terms of the all simulated periodic and nonperiodic stripes under
different noise levels, respectively. The highest MPSNR and
MSSIM, and smallest MSAM values are labeled in bold. From
these two tables, we can see that the proposed LRTD method
achieves the highest MPSNR and MSSIM and the significant
improvement over the compared methods in all cases. Moreover,
we can observe that the compared methods are not robust. As
seen, the MPSNR and MSSIN values of the three compared
methods are evidently decreased with the intensity of stripes
increase, but the proposed method also obtains stable results. For
the MSAM index, the proposed method achieves the smallest
values in most cases when compared to the other methods, which
verifies that our method generates the lowest spectral distortion.



CHEN et al.: DESTRIPING OF MULTISPECTRAL REMOTE SENSING IMAGE USING LOW-RANK TENSOR DECOMPOSITION 4959

Fig. 6. PSNR and SSIM values of each band in case (r = 0.5 and I = 0.2). (a) PSNR values of periodic stripes. (b) PSNR values of nonperiodic stripes.
(c) SSIM values of periodic stripes. (d) SSIM values of nonperiodic stripes.

Fig. 7. Mean cross-track profiles for image shown in Fig. 2 (top row) and Fig. 4 (bottom row). (a) Striped. (b) ASSTV. (c) LRMID. (d) TVGS. (e) LRTD.

In summary, the quantitative comparison is in accordance with
the above-mentioned visual results.

We further show the PSNR and SSIM values in each band for
cases of Figs. 2 and 4. As the display in Fig. 6, we can observe
that the PSNR and SSIM values of the proposed method are
significantly higher than those of the compared methods in all
bands, indicating that the proposed method indeed outperforms
other methods for stripe noise removal. The similar observation
also can be seen in other cases.

Qualitative comparison: Furthermore, we use the mean cross-
track profile as the qualitative index to compare the performance
of the all destriping methods. Fig. 7 shows the mean cross-track
profiles of Figs. 2 and 4. The horizontal axis is the column
number, and the vertical axis is the mean value of each column.
Fig. 7(a) shows that there are rapid fluctuations in the curve (blue
curve) due to the effects of the stripe noise. After destriping by
the four methods, the fluctuations are strongly reduced as shown
in Fig. 7(b)–(e). However, we can find that ASSTV, LRMID,
and TVGS fail to restore original mean cross-track profile (red
curve), which indicates that the destriping images may be dis-
torted, blurred, and oversmoothed. This is in accordance with the
visual results shown in Figs. 2–5. On the contrary, in Fig. 7(e),
it can be observed that the mean cross-track profile of LRTD
holds the same curve tendency as the original image. More-
over, to show the ability of estimating the stripe component,
we also display the mean cross-track profile for the estimated
stripe component. We also use Figs. 2 and 4 as the examples,
and the estimated stripe component of ASSTV is the difference

of the degraded image with the destriping image. As shown
in Fig. 8(a) and (b), ASSTV and LRMID fail to estimate the
original stripe component and introduce some minor errors in
stripe-free regions. TVGS obtains acceptable results compared
with ASSTV and LRMID. In Fig. 8(d), it can be seen that the
proposed method extracts the correct stripe component and does
not introduce extra stripe error in stripe-free locations. Thus, in
addition to removing the periodic and nonperiodic stripes effec-
tively, our LRTD method also has a better ability to preserve the
stripe-free information and detail.

2) Locations of Stripes are Identically Distributed in Each
Band

In the above-mentioned experiments, we consider that the lo-
cations of stripes are randomly distributed in each band. In the
following, we conduct a special stripe noise degradation, i.e.,
the location and intensity of stripes are identically distributed in
each band. This situation is more difficult to track because the
prior of the spectral dimension is completely dropped. More-
over, the information on the stripe locations fails to comple-
ment each other in all bands. To show the proposed method can
track this problem, we similarly select the Washington DC Mall
dataset as our second simulated experiments. The stripe noise
generation is the same as mentioned above, but the location
and degradation degree of the different band are identical. As
the above-mentioned experiments have shown that our LRTD
method has a better destriping performances in different stripe
degradation levels, we only consider the percentage r = 0.5 and
intensity I = {0.5, 0 − 1} in this type of stripes.
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Fig. 8. Mean cross-track profiles for estimated stripes shown in Fig. 2 (top row) and Fig. 4 (bottom row). (a) ASSTV. (b) LRMID. (c) TVGS. (d) LRTD.

Fig. 9. Destriping results of band 10 for the periodic stripes case (r = 0.5 and I = 0 − 1). (a) Original. (b) Degraded image with periodic stripes. Destriping
results of, (c) ASSTV, (d) LRMID, (e) TVGS, (f) LRTD.

Fig. 10. Destriping results of band 5 for the nonperiodic stripes case (r = 0.5 and I = 0 − 1). (a) Original. (b) Degraded image with nonperiodic stripes.
Destriping results of, (c) ASSTV, (d) LRMID, (e) TVGS, (f) LRTD.

Figs. 9 and 10 show the destriping results for periodic and
nonperiodic stripes in this type of noise, respectively. ASSTV
and LRMID can remove the stripes, but they smooth the de-
tails seriously, as presented in Figs. 9–10(c) and Figs. 9–10(d),
respectively. TVGS can moderately preserve the details, but
some stripe-like artifacts exist in the image shown in Fig. 9(e).
Fig. 10(e) also shows that TVGS seriously blurs the image .
From Figs. 9–10(f) to see, the proposed LRTD achieves the best
destriping results, removing all of the stripes while preserving
most of the structures and details in the image.

In Table III, we calculate the quantitative indices to show the
performance of the destriping results in different degradation
levels. As shown in this table, the proposed method still obtains
the highest values in terms of MPSNR and MSSIM, which
again indicates that the proposed method can track this situation
efficiently. TVGS gets the satisfactory results because it handles
the stripes band by band. The visual comparison shows that the

stripes are completely removed by ASSTV and LRMID. To
show the difference between the compared methods, we show
the qualitative comparison. Fig. 11 shows the mean cross-track
profile of the destriping image. It is easy to observe that the
restored curves of ASSTV, LRMID, and TVGS deviate from
the original curve, which illustrates image distortion and blur in
the image. The results of the proposed method, which are shown
in Fig. 11(e), are more reasonable , indicating that the proposed
method can track this type of stripes.

B. Real Data Experiments

To illustrate the robustness of the proposed method, we also
choose four real image in our real data experiments. Since
in some real MSI imaging scenarios, the MSI is not only
contaminated by stripe noise, but also degraded by some random
noises, thus two of the four data are degraded by the stripe noise
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Fig. 11. Mean cross-track profiles for image shown in Fig. 9 (top row) and Fig. 10 (bottom row). (a) Striped. (b) ASSTV. (c) LRMID. (d) TVGS. (e) LRTD.

TABLE III
QUANTITATIVE EVALUATION OF THE DIFFERENT METHODS FOR THE STRIPES

UNDER DIFFERENT NOISE LEVELS ON WASHINGTON DC MALL

with random noise. The first data is the Hyperion image, which
was also used in [32], and the subimage of 256 × 256 × 10 is
extracted for our experiment. The HYDICE Urban data is em-
ployed as the second data. The original size of the image is
307 × 307 × 210, and some of the bands are contaminated by
nonperiodic stripes. We extract a subimage of 307 × 307 × 8 as
our experimental data. The third real data adopt an EO-1 Hyper-
ion image as the test image, which is mainly corrupted by stripes
and random noise. The original image size is 3631 × 256 × 198,
and a subimage of size 254 × 254 × 10 is used in our experi-
ment. The last one CHRIS is a push-broom scanner with the
ability to obtain images from five different angles [15]. In our
study, we choose an image obtained using mode-2, which has
748 × 766 pixels with 18 bands. The image was collected on
October 18, 2005. A subimage of 698 × 698 × 10 of this image
is adopted to test the experiment.

Figs. 12–15 show the destriping results of the different meth-
ods for the four real datasets. From Figs. 12–13(a), we can
see that the Hyperion data and Urban data are degraded by the
nonperiodic stripes. Figs. 14–15(a) show that the EO-1 Hype-
rion data and CHRIS data are seriously contaminated by the

stripe noise and tiny random noise. From the results, we have
the following observations. First, ASSTV, LRMID, and TVGS
can efficiently remove the stripe noise when the image is only
degraded by the stripe noise (see Figs. 12–13). Second, when
the image is degraded by the mixture noise, ASSTV only can
remove the stripe noise, but the random noise is also left in the
image as shown in Figs. 14–15(b). LRMID can eliminate the
most of the mixture noise, but the image details and texture are
destroyed as shown in Figs. 14–15(c). As shown in Figs. 14–
15(d), TVGS fails to remove the obvious stripe and the random
noise. Third, no matter how degraded the image is, the proposed
method can effectively remove the noise as well as preserving
the image details. For convenience of comparison, the detailed
regions extracted from Fig. 15 are presented in Fig. 16. It can be
easily observed that LRMID and the proposed method obtain
more smoothness results, and with ASSTV, the random noise
exists in the image. In summary, the proposed LRTD method
can simultaneously remove the stripe noise and random noise,
and effectively preserve the details, which indicates that the pro-
posed method is more practical in real MSI destriping compared
with other three methods.

For the quantitative assessment in the real data experiments,
since without the ground-truth image as reference data, we use
two nonreference indices, the inverse coefficient of variation
(ICV) [16], [21], [32] and mean relative deviation (MRD) [16],
[21], [32], to evaluate the destriping results. The indices ICV
and MRD are specific for evaluating the destriping performance.
ICV evaluates the level of stripe noise and so would be calculated
for homogeneous striped regions. Conversely, the MRD index
is employed to evaluate the performance of the methods to
preserve the information of nonstriped regions. These indices
are defined as follows [16], [21]:

ICV =
Rm

Rs
,

MRD =
1

MN

∑

i

|xi − yi |
yi

× 100%
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Fig. 12. Destriping results of band 3 in real data 1. (a) Original. Destriping results by, (b) ASSTV, (c) LRMID, (d) TVGS, (e) LRTD.

Fig. 13. Destriping results of band 8 in real data 2. (a) Original. Destriping results by, (b) ASSTV, (c) LRMID, (d) TVGS, (e) LRTD.

Fig. 14. Destriping results of band 1 in real data 3. (a) Original. Destriping results by, (b) ASSTV, (c) LRMID, (d) TVGS, (e) LRTD.

Fig. 15. Destriping results of band 1 in real data 4. (a) Original. Destriping results by, (b) ASSTV, (c) LRMID, (d) TVGS, (e) LRTD.

where Rm and Rs are the mean and standard deviation of pixel
values, respectively. xi and yi are the pixel values in the destrip-
ing and striped images, respectively.

In our experiments, we select the homogenous regions with
a window of 10 × 10 pixels to calculate the ICV and MRD in-
dices in each band, and then the mean value of these indices for
the whole MSI is calculated and denoted as MICV and MMRD.
Moreover, we separately select three sampled homogenous re-

gions and sharp nonstripe regions to calculate the indices MICV
and MMRD. It is worthy to point out that since there is an ab-
sence of 10 × 10 nonstripe region in Figs. 12, 14, and 15, we
only calculate the MMRD in Urban data. In general, higher
MICV and lower MMRD indicate the better destriping results.
The better MICV and MMRD values are labeled in bold in
each sample. The visual comparison of Figs. 12 and 13 show
that the results of different methods are the same. However,
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Fig. 16. Magnified results of Fig. 15. (a) Original. Destriping results by, (b) ASSTV, (c) LRMID, (d) TVGS, (e) LRTD.

TABLE IV
QUANTITATIVE EVALUATION OF DIFFERENT METHODS FOR THE REAL DATA

EXPERIMENTS

as displayed in the nonreference indices MICV and MMRD in
Table IV, the proposed LRTD obtains the higher MICV except
one sample, which indicates that the destriping ability of the
proposed method outperforms the compared methods. For the
MMRD index in Urban data, TVGS performs the lower values;
the reason is that it implements the destriping band by band.
Compared with the MSI destriping methods ASSTV and LR-
MID, the proposed method achieves the lower MMRD values.
Thus the proposed method has the better ability for preserv-
ing the information of the nonstripe regions than ASSTV and
LRMID.

C. Discussion

In this discussion, we will analyze the sensitivity of the pa-
rameters involved in the proposed LRTD method. There are
seven parameters that should be determined before performing
the Algorithm 1 for MSI destriping, including three regulariza-
tion parameters λ1 , λ2 , and λ3 , the positive penalty parameter
β, and three estimated rank parameters [r1 , r2 , r3 ] along the
three modes in Tucker decomposition for stripe component. To
show the practicability of our LRTD method, we only fine tune
the three regularization parameters in all our experiments, which
simplifies the numbers of the parameter adjustment. For the pos-
itive penalty parameter β, we set β = 0.1. r1 and r2 depict the
complexity of spatial redundancy, and r3 depicts the complexity

of temporal redundancy. In our study, we suppose that the pixel
values of each stripe line are identical, and the stripe locations of
each band are random distribution. Thus for the estimated rank
parameters [r1 , r2 , r3 ], we approximately set it as [1, B,B]. It
is worth noting that this assumption may be violated in some
data, but the other regularization terms can help to remove the
stripes even though the Tucker decomposition fails to precisely
estimate the stripe component.

In the following, we need to present how to determine the
three regularization parameters λ1 , λ2 , and λ3 . Since the spe-
cific noise levels and percentages of stripes vary a lot in our
experiments, thus the corresponding regularization parameters
in our model need to be fine tuned according to the different
degradation levels of the test image. To clearly show the sensi-
tivity analyses of the regularization parameters, we select four
different stripe degradation levels from the simulated data ex-
periments as the examples, i.e., periodic stripes and nonperiodic
stripes in the case of r = 0.2, I = 0.2 and r = 0.8, I = 0.8, re-
spectively. We use the MPSNR index as the evaluation measure
to evaluate the selection of these parameters.

1) Sensitivity Analysis of Parameter λ1: In the LRTD solver,
λ1 is used to balance the smoothness of the desired image in
the spatial horizontal direction, which depends on the stripe
level. Fig. 17 shows the curves of the MPSNR values with
the change of the parameter λ1 in different degradation levels.
In Fig. 17(a) and (c), we can observe that MRSNR achieves
the optimal performance when λ1 that is chosen, is near to
0.0005. However, from Fig. 17(b) and (d), we can see that the
proposed method performs best when λ1 = 0.001 and λ1 =
0.005, respectively. We set r = 0.2, I = 0.2 as the sparse stripes
case and r = 0.8, I = 0.8 as dense stripes. Therefore, we can
summarize a conclusion for the selection of parameter λ1 . When
the stripes are sparse in the image, we should select a smaller λ1
value. On the contrary, a higher λ1 would more suitable for the
dense stripe situation. Since the different degradation levels of
the stripe noise in our experiments, we empirically set λ1 varied
in the set of {0.0005, 0.001, 0.005}.

2) Sensitivity Analysis of Parameter λ2: In the LRTD solver,
λ2 is used to control the spectral consistency. For MSI, the spec-
tral consistency is a very important prior, which can help us to
suppress the stripe noise and preserve the spectral information,
especially for the locations of the stripe noise whose distribu-
tion is different on adjacent bands. Fig. 18 presents the MPSNR
values of the LRTD solver with different λ2 values in four
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Fig. 17. Sensitivity analysis of parameter λ1 in four different stripe degra-
dation levels. (a) Periodic stripes (r = 0.2, I = 0.2). (b) Periodic stripes
(r = 0.8, I = 0.8). (c) Nonperiodic stripes (r = 0.2, I = 0.2). (d) Nonperi-
odic stripes (r = 0.8, I = 0.8).

Fig. 18. Sensitivity analysis of parameter λ2 in four different stripe degra-
dation levels. (a) Periodic stripes (r = 0.2, I = 0.2). (b) Periodic stripes
(r = 0.8, I = 0.8). (c) Nonperiodic stripes (r = 0.2, I = 0.2). (d) Nonperi-
odic stripes (r = 0.8, I = 0.8).

different degradation levels. From the figures to see, it can be
observed that the smaller λ2 value also applies to sparse stripes,
and dense stripes should select a higher value. Thereby, we set
λ2 = 0.001 when the stripe noise is sparse in the image, and
for dense stripes, we set λ2 = 0.01. In all our experiments, we
empirically set λ2 varied in the set of {0.001, 0.005, 0.01}.

3) Sensitivity Analysis of Parameter λ3: Fig. 19 plots the
experimental results of MPSNR versus the parameter λ3 under
different of the degradation levels. It can be observed that these
regularization terms can improve the experimental results even

Fig. 19. Sensitivity analysis of parameter λ3 in four different stripe degra-
dation levels. (a) Periodic stripes (r = 0.2, I = 0.2). (b) Periodic stripes
(r = 0.8, I = 0.8). (c) Nonperiodic stripes (r = 0.2, I = 0.2). (d) Nonperi-
odic stripes (r = 0.8, I = 0.8).

Fig. 20. Sensitivity analysis of the number of bands in four different stripe
degradation levels. (a) Periodic stripes. (b) Nonperiodic stripes.

though the stripe component violates the group sparsity prior
when the stripes are dense in the image. From Fig. 19(a)–(c) to
see, the highest MPSNR values are achieved due to the optimal
performance with λ3 = 0.01. However, Fig. 19(d) shows that
the destriping result is obtained best when λ3 = 0.05. Therefore,
for the selection of parameter λ3 , our recommended the set of
candidate values is {0.01, 0.05}.

Overall, the parameter setting of our proposed LRTD method
is relatively stable, because the alternative values of the pa-
rameters λ1 , λ2 , and λ3 are only a few. Moreover, the penalty
parameter β and estimated rank parameters [r1 , r2 , r3 ] do not
need to be manually adjusted. In the following, we will ana-
lyze the effects of the number of bands in our MSI destriping
and the spectral analysis. Finally, we will present the numerical
convergence of our proposed method.

4) Effects of the Number of Bands: In our simulated experi-
ments, the number of bands is chosen as 10. In general, the large
number of bands may improve the destriping results because the
more information can complement each band. However, it can
result in the obvious increase of the computational cost. Fig. 20
shows the changes of the MPSNR values with the different num-
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Fig. 21. Spectrum of pixel (200, 250) in the destriping results. (a) Periodic stripes (r = 0.2, I = 0.2). (b) Periodic stripes (r = 0.8, I = 0.8). (c) Nonperiodic
stripes (r = 0.2, I = 0.2). (d) Nonperiodic stripes (r = 0.8, I = 0.8).

Fig. 22. Relative change ‖X k + 1 −X k ‖F

‖X k ‖F
values versus the iteration number of the LRTD solver in four different stripe degradation levels. (a) Periodic stripes

(r = 0.2, I = 0.2). (b) Periodic stripes (r = 0.8, I = 0.8). (c) Nonperiodic stripes (r = 0.2, I = 0.2). (d) Nonperiodic stripes (r = 0.8, I = 0.8).

ber of bands in four different degradation levels. From Fig. 20(a)
and the blue curve in Fig. 20(b), it can be observed that the MP-
SNR values achieved gradually increase when the number of
bands is increased. Nevertheless, the MPSNR values tend to re-
main stable when the number of bands is large than 10. Thereby,
we set the number of bands as 10 in our simulated experiments.

5) Spectral Analysis: In this part, we further show that the
proposed LRTD method can efficiently preserve the important
spectral information before and after restoration. To clearly il-
lustrate the performance, we select a subimage of 256 × 256
pixels with 100 spectral bands from the Washington DC Mall to
add four different stripe levels and then show the spectral signa-
tures. Fig. 21 shows the spectral signatures of pixel (200, 250)
in different stripe cases. From the top of Fig. 21 to see, there
are many impulses in the curves due to the effects of the stripe
noise. After destriping, the impulses are all reduced as shown in
the bottom of Fig. 21. In Fig. 21(a)–(c), the spectral information
of all bands is well preserved because the curves of our results
are basically the same as the original curves. Although the spec-
tral information deviates original signatures in some bands as
shown in Fig. 21(d), most of the spectral information is also
greatly maintained. In general, the result of Fig. 21 is sufficient
to indicate that our method can effectively preserve the spectral
signatures in different stripe cases.

6) Numerical convergence of the LRTD solver: It is easy
to see that our LRTD model (6) is a nonconvex optimization
problem because of the nonconvexity of Tucker decomposition.
For a nonconvex problem, it is hard to find a globally optimal
solution and prove the convergence of the algorithm. In our
study, we introduce an efficient ALM method to optimize our
LRTD model. To show the empirical analysis for the conver-
gence of our LRTD solver, we present the evolutional curve

of the relative change ‖X k + 1 −X k ‖F

‖X k ‖F
values versus the iteration

number in four different experimental cases. From the curves
of the relative change presented in Fig. 22, we can observe
that though there is a significant jump of the relative change
in some cases, the relative change converges to zero when the
algorithms reach a relatively high iteration number, indicating
that the convergence of the LRTD solver can be numerically
guaranteed.

7) Running time: To measure the efficiency of the proposed
method, we show that the running time of four compared meth-
ods on four real data experiments in Table V. From the table to
see, the proposed method obtains the acceptable running time
compared with other methods. The reason is that the proposed
method needs to iterate hundreds of times to achieve the conver-
gence shown in Fig. 22; as a result, the running time is not the
fastest. In the future, we will design a more effective algorithm
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TABLE V
RUNNING TIME (IN SECONDS) OF THE DIFFERENT METHODS IN THE REAL

DATA EXPERIMENTS

to speed up our method. Although our method is not the fastest,
we perform better than others mentioned above.

V. CONCLUSION

In this paper, we proposed a novel LRTD framework for
MSI destriping. Different from the existing destriping methods,
the image component and stripe component are both modeled
as tensor-based representation in our work. The spatial uni-
directional TV and spectral TV regularization on the image
can enhance the piecewise smoothness of the image compo-
nent without the stripe component, whereas the low-rank tensor
Tucker decomposition and �2,1-norm regularization are utilized
to depict the global spatial correlation and group sparsity char-
acteristic of the stripe component among all bands, which can
discriminatively distinguish the stripe component from the im-
age component. To effectively solve the nonconvex tensor op-
timization model, we design a popular algorithm based on the
ALM method. Compared with existing destriping methods, the
proposed method has achieved the better destriping performance
tested on various simulated stripe cases and real striped image.

Despite the proposed LRTD achieves a good performance for
horizontal or vertical stripes, it fails to handle the oblique stripes
in georeferenced images. In the future, the rotation strategy [47],
[48] can be incorporated into our LRTD model to track the
oblique stripes. Moreover, we will try to extend the application
of our method to video rain streak removal by incorporating
rotation strategy. Finally, the deep learning ideas of infrared
image stripe noise removal [49] can be extended to remote
sensing image destriping.

ACKNOWLEDGMENT

The authors would like to thank the Editors and the anony-
mous reviewers for their constructive comments which helped
to improve the quality of the paper. The authors would like
to thank Dr. Yi Chang for providing the free download of the
source code for ASSTV and LRMID and sharing the Hyperion
dataset, and Dr. Biao Cao for sharing the CHRIS dataset.

REFERENCES

[1] J. Chen, Y. Shao, H. Guo, W. Wang, and B. Zhu, “Destriping CMODIS
data by power filtering,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 9,
pp. 2119–2124, Sep. 2003.

[2] N. Yokoya, X. X. Zhu, and A. Plaza, “Multisensor coupled spectral unmix-
ing for time-series analysis,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 5, pp. 2842–2857, May 2017.

[3] N. Yokoya, C. Grohnfeldt, and J. Chanussot, “Hyperspectral and multi-
spectral data fusion: A comparative review of the recent literature,” IEEE
Geosci. Remote Sens. Mag., vol. 5, no. 2, pp. 29–56, Jun. 2017.

[4] Q. Liu, L. Liu, and Y. Wang, “Unsupervised change detection for multi-
spectral remote sensing images using random walks,” Remote Sens., vol. 9,
no. 5, p. 438, 2017.

[5] S. K. Sinha and L. K. Tiwari, “Enhancement of image classification for
forest encroachment mapping with destriped SWIR band in the wavelet
domain,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11,
no. 7, pp. 2276–2281, Jul. 2018.

[6] J. Chen and C. Chang, “Destriping of landsat MSS images by filter-
ing techniques,” Photogrammetic Eng. Remote Sens., vol. 58, no. 10,
pp. 1417–1423, 1992.

[7] J. Chen, H. Lin, Y. Shao, and L. Yang, “Oblique striping removal in remote
sensing imagery based on wavelet transform,” Int. J. Remote Sens., vol. 27,
no. 8, pp. 1717–1723, 2006.

[8] J. Torres and S. O. Infante, “Wavelet analysis for the elimination of striping
noise in satellite images,” Opt. Eng., vol. 40, no. 7, pp. 1309–1314, 2001.
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