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a b s t r a c t 

Stripe noise removal from remote sensing imagery is a key preprocessing step for many 

applications, such as urban planning, military, and environmental monitoring. Two signif- 

icant priors of the stripe are low-rankness and group sparsity, which play a central role 

in many destriping methods. However, for oblique stripes, these two priors are no longer 

explicitly applicable. To overcome this difficulty, we propose a novel sheared decomposi- 

tion framework for oblique stripe removal. The main idea is to perform a shear opera- 

tion on the observed image, so that the oblique stripe is transformed to nearly vertical 

lines. For the stripe component, we characterize the low-rankness and group sparsity pri- 

ors in the sheared domain. For the image component, we characterize the smoothness 

prior in the original domain by unidirectional total variation (UTV), which can preserve 

the strong edges and geometric features while suppressing stripes. To solve the proposed 

model, we design an efficient alternating direction method of multipliers (ADMM) algo- 

rithm with guaranteed convergence. Experiments using simulated and real data show that 

the proposed method can remove the oblique stripe effectively and outperform the state- 

of-the-art methods qualitatively and quantitatively. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Remote sensing imagery has been widely used in urban planning, military, environmental monitoring, and many other

fields. However, during the imaging process, the observed image is inevitably contaminated by the stripe noise, due to

dropping lines during scanning, differences between forward and reverse scanning, and variations in calibrations across

sensor arrays in multisensor instruments [18,24] . The stripe noise not only greatly degrades the image quality, but also

results in low accuracy in segmentation [22] and target detection [40] . Therefore, destriping is a key preprocessing before

the applications of remote sensing imagery. 

For the vertical (horizontal) stripe, existing destriping methods can be roughly divided into four categories: digit filtering-

based methods, statistics-based methods, optimization-based methods, and learning-based method. Filtering-based methods

suppressed the stripe noise by constructing a filter on a transformed domain, such as Fourier transform [14,35] , wavelet

analysis [43] , and the combined domain filter [33,36] . Statistics-based methods mainly relied on the statistical properties

of digital number for each sensor [6,21,24,37,41,48] , such as moment matching [21,41] and histogram matching [24,48] .
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Optimization-based methods regarded destriping as an ill-posed inverse problem and performed destriping by solving regu-

larization models [1,3,7–9,11,16,17,29,30,38,44,45,52,54,56,57] , such as anisotropic spectral-spatial total variation (TV) model 

[9] , the improved unidirectional total variation (UTV) models [7,8,25,27,45,50,52,56] , low-rank models [11,26,28,30,31,55] ,

and global sparsity models [15,16,29,42,46] . Recently, learning-based method [10] introduced the deep convolutional neural

network (CNN) for destriping to extract the spatial information of stripe in an adaptive way. Although the above methods

perform well in dealing with the vertical stripe, they are no longer explicitly applicable for oblique stripe removal. This

is mainly because the oblique stripe does not exhibit most priors for the vertical stripe, such as group sparsity and low-

rankness. 

For the oblique stripe, existing destriping methods can be mainly divided into three classes: filtering-based meth-

ods [13,18,23,39] , histogram matching-based methods [21,24,4 8,4 9] , and the transformed low-rankness-based method [12] .

Filtering-based methods constructed filters to remove most frequency components produced by the oblique stripe at a given

frequency. But they also removed some frequency components caused by the non-stripe image information at the same

time, resulting in the poor representation ability for the periodic stripe. Histogram-based methods dealt with the stripe

noise by matching the histogram of each subscene to the histogram of the overall image, which is computationally effi-

cient for the oblique stripe removal. However, these methods must pre-establish the reference histogram, which is usually

not easy to obtain. In addition, filtering-based and histogram-based methods focused on directly estimating the clear image

from the observed image, and the resulting image is either over-smooth or contains residual stripe noise. Recently, Chang

et al. [12] proposed a transformed low-rank model for line pattern noise removal, whose main idea was to rotate the oblique

noise into a vertical form, so that the low-rankness prior was applicable. More precisely, they first rotated the image into

a larger domain to perform destriping, then extracted the center part of the result and interpolated it to the original im-

age size. However, the extraction and interpolation operators unavoidably damage the high-frequency information in the

resulting image. 

In order to avoid the loss of high-frequency information, we propose a novel sheared decomposition framework for

oblique stripe removal, in which the stripe and image components are characterized by appropriate priors. The main idea

is to perform a shear operation on the observed image so that the oblique stripe is transformed to nearly vertical lines.

In the sheared domain, we observe that the stripe component exhibits obvious low-rankness and group sparsity structure.

In addition, when the stripe is vertical, the stripe component changes the statistical distribution of horizontal derivation

obviously, while the vertical derivation changes less. Based on the above observations, we employ low-rankness and group

sparsity regularizations to characterize the stripe component, and utilize UTV to characterize the smoothness prior of the

image component for destriping. To tackle the proposed model efficiently, we develop an alternating direction method of

multipliers (ADMM) [4,20] algorithm with guaranteed convergence. Experimental results on simulated and real data show

better destriping performance of the proposed method by comparing with the state-of-the-art destriping methods. The main

contributions of the proposed method are summarized as follows: 

• We propose a novel sheared destriping model to effectively exploit the directional characteristic, low-rankness, and

group sparsity of the oblique stripe in a unified manner. 

• We develop the ADMM algorithm to solve the proposed model, and the convergence of the algorithm is theoretically

guaranteed. 

• Experimental results on simulated and real data demonstrate that the proposed method outperforms the state-of-the-

art methods. 

The rest of this paper is organized as follows. The proposed model and its optimization procedure are formulated in

Section 2 . Simulated and real data experiments are described in Section 3 . Finally, we conclude this paper in Section 4 . 

2. The proposed model 

In this section, we give the proposed model and analyze the motivation of each term. Section 2.1 introduces a sheared

degradation model. Section 2.2 gives a sheared low-rankness recovery model and analyzes the motivation of each term.

Finally, the proposed model is solved in Section 2.3 . 

2.1. The sheared degradation model 

The degradation model of remote sensing imagery can be formulated as follows: 

Y = U + S + N, 

where Y , U , S , and N ∈ R 

M×N are the degraded image, the potential clear image, the additive oblique stripe noise, and the

Gaussian noise, respectively. In order to directly use low-rankness regularization to depict the distinct direction characteristic

of the line pattern noise, Chang et al. [12] proposed a transformed low-rank model by rotating the observed image vertically,

which reduces the high-frequency information of the original image. 

In order to overcome the shortcoming, we use the shear operator to transform the oblique stripe noise vertically (shown

in Fig. 1 ), which does not include rotation and filling up. This shear operation helps to transform oblique stripes into vertical

ones by changing the relative positions of different rows. Where the operator τ [34] is determined by the parameters α, and
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Fig. 1. Overview of the proposed method. In the first row, the degradation model of remote sensing imagery. In the second row, the input image is sheared 

to the domain where the stripe noise has strictly vertical appearance. In the third row, the stripe layer has distinct properties. 

 

 

 

 

 

 

 

 

 

 

 

α is used to control the shear angle (see [34] for more details). In our paper, the steps of determining the shear operator τ
are listed as follows: 

• Generally, the angle between the vertical direction and the oblique stripe distributes in (−π
2 , 

π
2 ] . If the angle belongs to

(−π
2 , 0) , we can restrict it into the range of (0 , π2 ) by the left-right flipping. If the angle belongs to ( π4 , 

π
2 ] , we can restrict

it into the range of [0 , π4 ) by transposing (i.e. interchanging the rows and columns of a given matrix). Thus, to save space,

we only discuss the situations where α ∈ [0 , π4 ]) in the following (when the stripe is vertical, we determine the angle is

zero). 

• We obtain the shear angle α by the following steps: (1) performing median filtering on the observed image; (2) com-

puting the residual image between the observed image and the filtered image; (3) performing Hough transform [2] on the

residual image to calculate a rough estimation of the angle; (4) fine-tuning the angle with [ −5 ◦, 5 ◦] with the step size of 1 ◦.

• Given the estimated α, we apply the shear operation τ using the formula (1) . 

τ ◦ S : R 

M×N → R 

M×N : S �→ S θ , 

where the ( ̄i , j̄ ) -th entry of S θ is given, for ī = 1 , . . . , M and j̄ = 1 , . . . , N, by S θ
ī , ̄j 

:= S i, j with { 

i := ī , 

j := 

(
j̄ − 1 + 

⌈ 

4 

π
α ī 

⌋ )
mod N + 1 , 

(1)

where � · � denotes the procedure of rounding the real number · as the nearest integer towards the direction of zero. The

shear operator was first proposed in [34] , for extracting texture extending in different directions in image decomposition.

In our method, the shear operator can straighten the oblique stripe, so that we can directly use the low-rankness prior,
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Fig. 2. An example for the shear operator (the image size is 16 × 16 and α = 

π
4 

). (a) The original image; (b) The sheared image by the shear operator τ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the size of the output image is the same with the original image. In addition, the proposed method avoids the loss of

high-frequency information since we do not perform a interpolation operator; see Fig. 1 . Considering the image shown in

Fig. 2 (a), we can transform Fig. 2 (a) into Fig. 2 (b) by using the shear operator τ obtained by the above steps. 

2.2. The sheared low-rank recovery model 

We propose the sheared low-rank recovery model as follows: 

arg min 

U,S 

1 

2 

‖ Y − U − S‖ 

2 
2 + λ1 ‖ τ ◦ S‖ ∗ + λ2 ‖ τ ◦ S‖ 2 , 1 + λ3 ‖∇ x U‖ 1 , (2) 

where λ1 , λ2 , and λ3 are positive regularization parameters to balance the four terms, and ‖ τ ◦ S‖ 2 , 1 = �N 
i =1 

‖ (τ ◦ S) i ‖ 2 ,
( τ◦S ) i denotes the i th group of τ◦S . The first term in (2) is the data fidelity term. The second and third terms are the low-

rankness and group sparsity regularization to characterize structure of the stripe component, respectively. The fourth term

is the UTV regularization to characterize the image layer. In the following, we explain all the regularizations in our model

in detail. 

The low-rankness of the oblique stripe component. We use the low-rankness property of the sheared domain to char-

acterize the distinctly directional property of the oblique stripe. In Fig. 1 , we see that the singular values show different

sparsity degrees, and the singular values of the sheared oblique stripe decrease to zero much rapidly. Thus, we argue that

the low-rankness property of the sheared domain of the oblique stripe component is much superior. The above results

motivate us to use the low-rankness prior on the sheared oblique stripe directly, i.e., R 1 (s ) = ‖ τ ◦ S‖ ∗. 

The group sparsity of the oblique stripe component. Fig. 1 shows the group sparsity of the sheared oblique stripe.

To further explore the properties of the stripe component, we plot the histogram with the horizontal axis to represent the

number of columns and the vertical axis to represent the 2-norm for each column of the stripe component. It shows that

the ordinate values in stripe-free are very small, and the reason is that the pixel value is zero at the stripe-free location. In

fact, the sheared oblique stripe has the obvious group column sparsity structure. Based on the above conclusion, we use the

group sparsity structure to constrain the stripe component, i.e., R 2 (s ) = ‖ τ ◦ S‖ 2 , 1 . 
The smoothness of the image component. A significant feature of the natural image is smoothness in the sense which

means that the values between adjacent pixels change a little. This suggests us to describe the properties of the image layer

by using the sparsity in the derivative domain. Fig. 3 presents the directional derivations of the degraded image and original

image when the stripe angle is zero (i.e., the stripe is vertical). When the stripe is vertical, the stripe seriously destroys the

derivative variation across the stripe line direction (the horizontal direction) while has less influence along the stripe line.

Furthermore, compared with the intensities of a random row in Fig. 3 (f) and (i), we find that the stripe mainly damages

the sparseness of the horizontal derivation of original image. Based on this phenomenon, we only use UTV in horizontal

derivation to characterize the image layer. More specifically, the regularization term for the image component is designed

as R 3 (u ) = ‖∇ x U‖ 1 . 
2.3. ADMM optimization algorithm 

It is difficult to directly solve S and U from (2) since the regularization terms are nondifferentiable and inseparable. To

overcome this problem, we utilize the alternating direction method of multipliers (ADMM) to solve the proposed model,

and the convergence of this algorithm is theoretically guaranteed [4,20,32] . First, by introducing three auxiliary variables

D = τ ◦ S, Q = τ ◦ S, and V = ∇ x U, we convert the unconstrained minimization problem (2) into the following constrained

one: 

arg min 

U,S,D,Q,V 

1 

2 

‖ Y − U − S‖ 

2 
F + λ1 ‖ D ‖ ∗ + λ2 ‖ Q‖ 2 , 1 + λ3 ‖ V ‖ 1 , 

s.t. τ ◦ S = D, τ ◦ S = Q, ∇ x U = V, 

(3) 



J.-L. Wang, T.-Z. Huang and T.-H. Ma et al. / Applied Mathematics and Computation 360 (2019) 167–180 171 

Fig. 3. The directional gradients for the degraded image and original image. This figure shows that the stripes only affect the horizontal gradient of the 

desired image. 

 

the corresponding augmented Lagrangian as follows: 

L (D, Q, V, U, S, P ) = 

1 

2 

‖ Y − U − S‖ 

2 
F + λ1 ‖ D ‖ ∗ + λ2 ‖ Q‖ 2 , 1 + λ3 ‖ V ‖ 1 

+ 

β1 

2 

‖ τ ◦ S − D + 

P 1 
β1 

‖ 

2 
F + 

β2 

2 

‖ τ ◦ S − Q + 

P 2 
β2 

‖ 

2 
F + 

β3 

2 

‖∇ x U − V + 

P 3 
β3 

‖ 

2 
F , (4)
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where P 1 , P 2 , and P 3 denote the Lagrange multipliers and β1 , β2 , and β3 are positive penalty parameters. Then ADMM

iterates as follows: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(D 

l+1 , Q 

l+1 , V 

l+1 ) = arg min 

D,Q,V 

L (S l , U 

l , D, Q, V, P l 1 , P 
l 
2 , P 

l 
3 ) , 

(U 

l+1 , S l+1 ) = arg min 

S,U 

L (S, U, D 

l+1 , Q 

l+1 , V 

l+1 , P l 1 , P 
l 
2 , P 

l 
3 ) , 

P k +1 
1 

= P k 1 + β1 (τ ◦ S k +1 − D 

k +1 ) , 

P k +1 
2 

= P k 2 + β2 (τ ◦ S k +1 − Q 

k +1 ) , 

P k +1 
3 

= P k 3 + β3 (� x U 

k +1 − V 

k +1 ) . 

Below we give the details of solving each subproblem. 

• In step one, we solve variables D , Q , and V . Since they are decoupled, their optimal solutions can be calculated sepa-

rately. 

(1) The D -subproblem is 

D 

k +1 = arg min 

D 

λ1 ‖ D ‖ ∗ + 

β1 

2 

‖ τ ◦ S − D + 

P 1 
β1 

‖ 

2 
F , 

which is a typical low-rank matrix approximation problem and has a closed-form solution [5] . It can be efficiently solved

by the following singular value thresholding operation: ⎧ ⎨ 

⎩ 

D 

k +1 = U 

k ( shrink ∗(�, λ))(V 

k ) T , 

shrink ∗(�, λ) = max 

(
�ii −

λ1 

β1 

, 0 

)
, 

(5) 

where τ ◦ S k + 

P k 
1 

β1 
= U 

k �(V k ) T is the singular value decomposition of τ ◦ S k + 

P k 
1 

β1 
and �ii is the diagonal element of the

singular value matrix �. 

(2) The Q -subproblem is 

Q 

k +1 = arg min 

Q 

λ2 ‖ Q‖ 2 , 1 + 

β2 

2 

‖ τ ◦ S − D + 

P 2 
β2 

‖ 

2 
F , 

which has a closed-form solution by the following soft-shrinkage formula [51] : 

Q 

k +1 
g i 

= max 

{
‖ r i ‖ 2 − λ2 

β2 

, 0 

}
r i 

‖ r i ‖ 2 

, r i = (τ ◦ S k ) g i + 

1 

β2 

(P k 2 ) g i , (6) 

where g i denotes each group of the image. 

(3) The V -subproblem is 

V 

k +1 = arg min 

V 

λ3 ‖ V ‖ 1 + 

β3 

2 

‖∇ x U − V + 

P 3 
β3 

‖ 

2 
F , 

which can be efficiently solved by the following soft-threshold shrinkage operation [19] : 

V 

k +1 = shrink 

(
∇ x U 

k + 

P k 3 

β3 

, 
λ3 

β3 

)
, (7) 

where 

( shrink (A, ξ )) i, j = 

A i, j 

| A i, j | ∗ max (| A i, j | − ξ , 0) , 

and the convention 0 · 0 
0 is assumed. 

• In step two, the ( U , S )-subproblem is a least squares problem given by 

(U 

k +1 , S k +1 ) = arg min 

U,S 

1 

2 

‖ Y − U − S‖ 

2 
F + 

β1 

2 

‖ τ ◦ S − D + 

P 1 
β1 

‖ 

2 
F 

+ 

β2 

2 

‖ τ ◦ S − Q + 

P 2 
β2 

‖ 

2 
F + + 

β3 

2 

‖∇ x U − V + 

P 3 
β3 

‖ 

2 
F , 

and the corresponding solution can be obtained by solving the normal equation as follows: (
A 1 I 
I A 2 

)(
U 

S 

)
= 

(
B 1 

B 2 

)
, (8) 
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where A 1 = I + β3 ∇ 

T 
x ∇ x , A 2 = I + β1 + β2 , B 1 = Y + β3 ∇ 

T 
x (V 

k +1 − P k 
3 

β3 
) , and B 2 = Y + β1 (τ

−1 ◦ D 

k +1 − τ−1 ◦ P k 
1 

β1 
) + β2 (τ

−1 ◦
Q 

k +1 − τ−1 ◦ P k 
2 

β2 
) , as ∇ x is a first-order difference matrix, ∇ 

T 
x ∇ x can be diagonalized by the transform matrix 
, i.e.,

∇ 

T 
x ∇ x = 
T �1 
 [53] . For a detailed discussion, we obtain the following decomposition: (

A 1 I 
I A 2 

)
= 

(

T 0 

0 
T 

)(
I + β3 �1 I 

I A 2 

)(

 0 

0 


)
, 

and the normal equations can be solved by using fast transforms (FFT). 

• In step three, we update the lagrange multipliers P 1 , P 2 , and P 3 as follows: ⎧ ⎨ 

⎩ 

P k +1 
1 

= P k 1 + β1 (τ ◦ S k +1 − D 

k +1 ) , 

P k +1 
2 

= P k 2 + β2 (τ ◦ S k +1 − Q 

k +1 ) , 

P k +1 
3 

= P k 3 + β3 (� x U 

k +1 − V 

k +1 ) . 

(9)

Although there are five components in the constrained problem (3) , they can be categorized as two parts. Let 

H = 

( 

D 

Q 

V 

) 

, G = 

(
U 

S 

)
. 

The optimization problem (4) is well structured since all the variable can be separated into two groups, which are H and

G . Due to the variables D , Q and V are decoupled and the convexity of the quadratic norm, which satisfy the framework

of ADMM [4,20] . Based on the previous derivation, we develop the following ADMM iterative scheme for the model (2) , as

outlined in Algorithm 1 . 

Algorithm 1 The sheared low-rank destriping algorithm. 

Input: observed image Y , parameters λ1 , λ2 , λ3 , β1 , β2 , β3 , and ε = 10 −4 . 

1: Initialize: S 0 = U 

0 = D 

0 = Q 

0 = V 

0 = 0 , and P 1 = P 2 = P 3 = 0 . 

2: while not converged ( ‖ ( U 

θ ) k +1 − ( U 

θ ) k ‖ F / ‖ ( U 

θ ) k ‖ F < ε) do 

3: Update D 

k + 1 , Q 

k + 1 , V 

k + 1 via (5), (6), and (7); 

3: Update S k + 1 and U 

k + 1 , via (8); 

4: Update the multiplier P 

k + 1 
1 

, P 

k + 1 
2 

, and P 

k + 1 
3 

via (9); 

5: end while 

Output: U . 

3. Experimental results 

In this section, we give experimental results to test the performance of the proposed method. Section 3.1 gives the

experimental settings. Sections 3.2 and 3.3 test the proposed method using the simulated and the real data, respectively.

Some discussions are given in Section 3.4 . 

3.1. Experimental setting 

We compare the proposed method with the state-of-the-art destriping methods, including low-rank-based single-image

decomposition model (denoted as LRSID) [11] , UTV model (denoted as UTV) [3] , low-pass filtering (denoted as LF) method

[18] , and median filtering (denoted as MF) method [39] . All experiments are run in MATLAB (R2016b) on a desktop of 2 GB

RAM, Inter (R) Core (TM) i3-3240 CPU @3.40 GHz. 

Stripe noise generation. For convenience of the parameter selection, the pixel values of the simulated and real data

are normalized to [0,1]. We denote the stripe level using a vector with two elements, e.g., (intensity, percentage), where

‘intensity’ denotes the absolute value of pixels of each stripe line and ‘percentage’ (denote as r ) represents the percentage

of the stripe area within the image. In our simulation experiments, the intensity is in the set of {10, 30, 50}, and r is in the

set of {0.1, 0.2, 0.3}. We select r × n lines in the image to add the stripe for the simulating case. The absolute value of each

pixel of each line is the same. 

Evaluation indices. We use several qualitative and quantitative assessments to evaluate the destriping performance.

Qualitative indices include the visual impact and the mean cross-track profile. Mean cross-track profile is a table, where

the x -axis and the y -axis represent the column number of the image and the mean value of each column, respectively.

We use two objective quantitative indices: the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) [47] to
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Fig. 4. The destriping results with the simulated nonperiodic stripe case (the corresponding PSNR (dB) and SSIM values are given under (c)–(e)). (a) The 

original hyperspectral image; (b) The degraded image; The destriping results by (c) LRSID, (d) UTV, and (e) the proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

evaluate the performance, which are defined as follows: 

PSNR = 10 log 10 

mn ( Max U ) 
2 

‖ U − U 

∗‖ 

2 
F 

, 

SSIM = 

(2 μU · μU ∗ + c 1 )(2 σU U ∗ + c 2 ) 

(μ2 
U 

+ μ2 
U ∗ + c 1 )(σ 2 

U 
+ σ 2 

U ∗ + c 2 ) 
, 

where U is the recovered image, U 

∗ is the true image, Max U is the maximum pixel of U , μU and μU ∗ are the mean values of

U and U 

∗, σU U ∗ is the covariance of U and U 

∗, σ U and σU ∗ are the standard variances of U and U 

∗, respectively, and c 1 , c 2 > 0

are constants. In general, higher PSNR and SSIM indices indicate better destriping performance. For the real experimental

data, since the ground-truth image is unavailable, we choose no-reference evaluation indices noise reduction (NR) [3,9,38] ,

and mean relative deviation (MRD) [9,38] to evaluate the performance of the proposed method. NR is used to assess the

ratio of stripe noise reduction in the frequency domain, and MRD is used to evaluate the performance of maintaining the

original pixel in the remote sensing imagery. It is noteworthy that reasonable NR values and lower MRD values mean better

quantitation results. For qualitative evaluation, we use the mean cross-track profile and power spectrum. 

Parameters selection. The proposed method involves three regularization parameters λ1 , λ2 , and λ3 , which determine

the degree of stripe removal. According to the dense level of the stripe component in the test image, we empirically run the

balance parameters in (2) λ1 , λ2 , and λ3 within [0.001, 0.1], [0.0001, 0.01], and [0.0 0 01, 0.01] with increment of 0.0 0 01, and

penalty parameters in (4) run β1 = β2 = β3 = 1 . We will discuss the selections of λ1 , λ2 , and λ3 in Section 3.4 . We try our

best to adjust the parameters of the compared methods to obtain the best results according to the authors’ suggestion. 

3.2. Simulated experiments 

In this section, we test the proposed method in two stripe cases: adding vertical stripes to a hyperspectral subimage of

Washington DC Mall 1 of size 256 × 256, and adding oblique stripes to the MODIS image 2 band 32 of size 400 × 400. 

3.2.1. The vertical stripe case 

We randomly add twenty percent of the non-periodic stripe into a 256 × 256 hyperspectral subimage. The pixels absolute

value of the stripe line is 50, and the noise intensity of each stripe line is equal. 

Fig. 4 shows the destriping results by different methods. We can see that LRSID and UTV remove most of stripe, but

the image structure in the same direction as the stripe are suppressed and some residual stripe cannot be removed. As

comparison, the proposed method has the best destriping results for removing stripe and preserving image details; see

Fig. 4 (e). 

Fig. 5 shows the estimated stripe images by different methods and compares the estimated stripe among three methods

with the original stripe. In Fig. 5 (d), the vertical and horizontal axes represent the mean value of each stripe line and the

column number, respectively. We can find that UTV and LRSID fail to precisely estimate the stripe component and create

some minor errors in the stripe-free regions. However, destriping results by the proposed method can be closer to the zero

values in stripe-free regions and precisely estimate the stripe component. 

Fig. 6 shows the average of each column of the destriping results compared with the original image. The vertical and

horizontal axes represent the mean of each column and the column number, respectively. We can see that the destriping

results by UTV and LRSID exist some residual stripe. In comparison, the proposed method performs the best and has same

curve with the original image profile. 

The values below Fig. 4 represent PSNR and SSIM results for the three destriping methods in simulated data experiments.

From which, we can observe that the proposed method has better PSNR and SSIM results in the simulated experiments,

which further indicates that the proposed method outperforms the other two methods. 
1 https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html 
2 https://ladsweb.nascom.nasa.gov/ 

https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
https://ladsweb.nascom.nasa.gov/
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Fig. 5. The estimated stripes by (a) LRSID, (b) UTV, and (c) the proposed method of Fig. 4 ; (d) The mean value comparison between the stripe estimated 

by LRSID, UTV, the proposed method, and the original one. 

Fig. 6. Column mean cross-track profiles of Fig. 4 . (a) The striped image; (b) LRSID; (c) UTV; (d) The proposed method. 

Fig. 7. The removal results at an angle of 45. (a) The observed image; The destriping results by (b) LF, (c) MF, and (d) the proposed method. 

 

 

 

 

 

 

 

 

 

3.2.2. The oblique stripe case 

Here, we compare the proposed method with LF and MF. We add periodic and nonperiodic stripe in a 400 × 400 MODIS

image with different angles. The absolute value of each pixel of each line is the same. 

Figs. 7 and 8 show the destriping results of the three methods with different angles. Regarding visual effects, we can

observe that the destriping results obtained by LF show some residual stripe. While those by MF show that all stripe can be

removed completely, but the restored image is blurred. Destriping results by the proposed method as shown in Figs. 7 (d) and

8 (d) are better than those of the other two comparing methods in preserving the stripe-free information and suppressing

artifacts. 

Tables 1 and 2 show the PSNR and SSIM results for the three destriping methods in different situations, where ‘intensity’

denotes the absolute value of pixels of each stripe line and ‘percentage’ (denote as r) represents the percentage of the stripe

area within the image. From Tables 1 and 2 , we can observe that the proposed method obtains better PSNR and SSIM values

in the simulation experiments. Combined with the visual effects discussed before, we can conclude that the quantitative

assessment results are consistent with the visual effects. 
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Fig. 8. The removal results at an angle of 25. (a) The observed image; The destriping results by (b) LF, (c) MF, and (d) the proposed method. 

Table 1 

PSNR (dB) and SSIM results of the test methods for different stripe noise types at an angle of 45. 

Stripe Method Index r = 0.1 r = 0.2 r = 0.3 

Intensity Intensity Intensity 

10 30 50 10 30 50 10 30 50 

LF PSNR 35.73 31.04 28.79 34.16 28.46 25.54 33.34 26.90 23.39 

SSIM 0.916 0.844 0.814 0.881 0.780 0.803 0.878 0.802 0.783 

periodic MF PSNR 34.37 34.03 33.81 32.70 31.14 30.70 30.67 29.10 27.11 

SSIM 0.904 0.901 0.900 0.876 0.853 0.850 0.845 0.825 0.815 

Ours PSNR 47.05 42.25 39.40 41.59 36.69 34.91 39.42 32.52 29.42 

SSIM 0.992 0.986 0.972 0.982 0.966 0.950 0.983 0.951 0.922 

LF PSNR 35.63 30.38 27.94 34.18 27.84 24.47 33.45 26.67 23.16 

SSIM 0.916 0.844 0.814 0.881 0.780 0.803 0.878 0.802 0.783 

nonperiodic MF PSNR 32.82 32.57 30.01 30.13 29.67 29.16 29.95 27.83 25.81 

SSIM 0.988 0.876 0.876 0.840 0.833 0.829 0.839 0.812 0.794 

Ours PSNR 45.14 39.99 38.26 41.90 35.89 33.41 39.18 31.37 28.14 

SSIM 0.989 0.972 0.961 0.985 0.965 0.936 0.984 0.959 0.920 

Table 2 

PSNR (dB) and SSIM results of the test methods for different stripe noise types at an angle of 25. 

Stripe Method Index r = 0.1 r = 0.2 r = 0.3 

Intensity Intensity Intensity 

10 30 50 10 30 50 10 30 50 

LF PSNR 35.83 31.26 29.19 34.30 28.67 31.60 33.44 27.10 23.54 

SSIM 0.918 0.852 0.838 0.884 0.803 0.825 0.880 0.828 0.803 

periodic MF PSNR 37.27 34.15 33.99 32.71 32.07 31.60 31.51 30.42 28.97 

SSIM 0.943 0.903 0.902 0.876 0.870 0.866 0.858 0.845 0.827 

Ours PSNR 45.72 40.02 37.56 41.91 36.09 33.38 39.39 32.57 28.98 

SSIM 0.988 0.963 0.944 0.980 0.949 0.924 0.976 0.934 0.874 

LF PSNR 35.75 30.52 28.15 34.30 27.96 24.67 33.28 26.31 24.67 

SSIM 0.918 0.852 0.838 0.884 0.803 0.825 0.880 0.828 0.803 

nonperiodic MF PSNR 34.29 31.61 30.64 30.81 30.19 29.21 29.91 27.52 29.21 

SSIM 0.904 0.859 0.846 0.847 0.834 0.830 0.839 0.811 0.830 

Ours PSNR 44.78 38.78 36.63 41.45 35.78 33.57 398.42 30.95 33.60 

SSIM 0.987 0.962 0.945 0.981 0.949 0.924 0.978 0.939 0.924 

 

 

 

3.3. Real experiments 

In this section, we choose three representative applications: the Aqua MODIS image 2 , the Terra MODIS image 3 and the

Landsat 7 4 image obtained by Landsat 8 5 geo-registration. We use these stripe noise removal tasks to validate the effective-

ness of the proposed method. For convenience of discussion, the gray values of each stripe image are scaled into the interval

[0,1]. 
3 https://ladsweb.nascom.nasa.gov/ 
4 https://landsat.usgs.gov/landsat- 7- data- users- handbook- section- 5 
5 https://landsat.usgs.gov/landsat- 8- l8- data- users- handbook 

https://ladsweb.nascom.nasa.gov/
https://landsat.usgs.gov/landsat-7-data-users-handbook-section-5
https://landsat.usgs.gov/landsat-8-l8-data-users-handbook
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Fig. 9. (a) The observed image; The destriping results by (b) LRSID, (c) UTV, and (d) the proposed method (the corresponding NR and MRD values are 

given under (b)–(d)). 

Fig. 10. Power spectrums of Fig. 9 . (a) The original image; (b) LRSID; (c) UTV; and (d) the proposed method. 

Table 3 

NR and MRD comparison of Figs. 11 and 12 . 

Image Terra MODIS Landsat 7 

Method LF MF Ours LF MF Ours 

NR 1.303 1.668 2.492 1.367 1.962 2.134 

MRD 0.106 0.118 0.100 0.655 0.056 0.035 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1. The vertical stripe case 

Fig. 9 shows the recovered results by three methods. We can see that the destriping result by LRSID shows some residual

stripe, while the destriping result by UTV shows that all the stripe can be removed completely, but some regions are blurred.

Destriping result by the proposed method is shown in Fig. 9 (d), which is better than the other two comparing methods in

preserving the stripe-free information and suppressing artifacts. 

We show the power spectrum of the Aqua MODIS in Fig. 10 , in order to illustrate the experimental results vividly. The

vertical and horizontal axes represent the normalized frequency and the mean power spectrum of all row, respectively.

In Fig. 10 (a), there are several large impulses in curve due to the effects of stripe, while the original ground-truth image

exhibits the smoother curve. From Fig. 10 (b) and (c), the sharp impulse of curves become smooth, but in the other positions,

the mean power spectrum of the destriping results curve show most of the burrs compared with the observed image power

spectrum one. 

The values below Fig. 9 shows the quantitation indices NR and MRD results for the three destriping methods. From

which, we can observe that the proposed method has better NR and MRD results than the comparing destriping methods. 

3.3.2. The oblique stripe case 

Figs. 11 and 12 show the final destriping results, they are obtained by considering visual effects and the spectral features.

Fig. 11 (a) is an oblique stripe image rotated by a real Terra MODIS vertical stripe image, and Fig. 12 (a) is a Landsat 7 oblique

stripe image obtained by Landsat 8 geo-registration. Figs. 11 (b)–(c) and 12 (b)–(c) show the clear reduction of the stripe;

however, the image are blurred. On the contrary, the proposed method not only removes a lot of stripe but also retains most

information of the stripe-free regions. Table 3 shows the quantitation indices NR and MRD results for the three destriping

methods. From Table 3 , we can observe that the proposed method has better NR and MRD results than the comparing

destriping methods, which further indicates that the proposed method outperforms the other two methods. 
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Fig. 11. (a) The observed image; The destriping results by (b) LF, (c) MF, and (d) the proposed method. 

Fig. 12. (a) The observed image; The destriping results by (b) LF, (c) MF, and (d) the proposed method. 

Fig. 13. Effectiveness of the proposed method (the stripe noise at an angle of 45, r = 0.1, intensity = 50). (a) The original image (PSNR, SSIM); (b) Observed 

image (23.96, 0.53); (c) The proposed method without the group sparsity (32.63, 0.93); (d)The proposed method without the low-rankness (36.75, 0.96); 

(e) The proposed method (37.05, 0.96). 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Discussion 

Regularization terms analysis. In our method, we use the low-rankness and group sparsity regularization to capture the

characteristics of stripes noise. To illustrate why their combination is better for the final performance, we show different

settings of regularization terms in Fig. 13 . Compared with Fig. 13 (c) and (e), there are many obvious blurring effects in

Fig. 13 (c), it demonstrates that the group sparsity is necessary to keep the sharpness of the image and exclude stripes noise.

Compared with Fig. 13 (d) and (e), Fig. 13 (e) contains a lot of details, which proves that the low-rankness of stripes noise

is useful for the proposed method. Therefore, by combining UTV, low-rankness, and the group sparsity constraints into the

optimization problem, our method can recover the clear image. 

Parameters analysis. There are three regularization parameters involved in our model (2) : λ1 , λ2 , and λ3 . To verify

the robustness of regularization parameters, we give a sensitivity analysis by using simulated experiment periodical stripe

Fig. 7 as an example and using the PSNR values as the evaluation measure. The best way to select the optimal value of

these three parameters is to find the global optimal value of PSNR in the three-dimensional parameters space. However,

this will unavoidably need a lot of time and computation. To overcome this difficulty, we use a greedy strategy to select the

parameter values one by one. Fig. 14 plots the curves of the PSNR values as a function of the regularization parameters λ1 ,

λ , and λ . From Fig. 14 , we can observe that PSNR performs obvious improvement when λ is increased from 0 to 0.02.
2 3 1 
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Fig. 14. PSNR curves as function of the regularization parameters. (a) The relationship between PSNR and λ1 ( λ2 = 0 . 005 , λ3 = 0 . 001 ); (b) The relationship 

between PSNR and λ2 ( λ1 = 0 . 02 , λ3 = 0 . 001 ); (c) The relationship between PSNR and λ3 ( λ1 = 0 . 02 , λ2 = 0 . 005 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, we also observe that PSNR appears a fast reduction when λ1 further increasing. In general, the highest PSNR

values is achieved with λ1 in 0.02. And the similar observation can be obtained with the other two parameters. In our

experiments, since there are extensive experiments in this paper, and the different degradation degrees of the stripe image,

we empirically run λ1 , λ2 , and λ3 within [0.005, 0.025], [0.001, 0.003], and [0.02, 0.035] with increment of 0.0001 for all

the experiments. 

4. Conclusions 

In this work, we have proposed a novel sheared low-rank model for oblique stripe noise removal. In our model, the

low-rankness and group sparsity regularization are utilized to depict the structure characteristics of the stripe component.

Moreover, we characterized the smoothness image prior by UTV regularization, to preserve the strong edges and geometric

features. We developed an ADMM for solving the proposed model, and the convergence of this algorithm can be guaranteed

by the existing ADMM theory. Finally, the qualitative and quantitative results showed that the proposed method has bet-

ter destriping performance than the state-of-the-art destriping methods, as well as preserving fine features of the original

image. 
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