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A B S T R A C T

Cloud and cloud shadow (cloud/shadow) removal from multitemporal satellite images is a challenging task and
has elicited much attention for subsequent information extraction. Regarding cloud/shadow areas as missing
information, low-rank matrix/tensor completion based methods are popular to recover information undergoing
cloud/shadow degradation. However, existing methods required to determine the cloud/shadow locations in
advance and failed to completely use the latent information in cloud/shadow areas. In this study, we propose a
blind cloud/shadow removal method for time-series remote sensing images by unifying cloud/shadow detection
and removal together. First, we decompose the degraded image into low-rank clean image (surface-reflected)
component and sparse (cloud/shadow) component, which can simultaneously and completely use the under-
lying characteristics of these two components. Meanwhile, the spatial-spectral total variation regularization is
introduced to promote the spatial-spectral continuity of the cloud/shadow component. Second, the cloud/
shadow locations are detected from the sparse component using a threshold method. Finally, we adopt the
cloud/shadow detection results to guide the information compensation from the original observed images to
better preserve the information in cloud/shadow-free locations. The problem of the proposed model is efficiently
addressed using the alternating direction method of multipliers. Both simulated and real datasets are performed
to demonstrate the effectiveness of our method for cloud/shadow detection and removal when compared with
other state-of-the-art methods.

1. Introduction

With the development of remote sensing technology, satellite
images become effective resources for identifying the distributions of
our ecological environment and have been extensively applied in many
fields, such as unmixing (Yokoya et al., 2017; Zhao et al., 2013), clas-
sification (Xia et al., 2018), and object detection (Yokoya and Iwasaki,
2015). However, optical remote sensing images have been inevitably
corrupted by cloud/shadow because optical imaging is severely affected
by scattered cloud and illumination changes owing to cloud shadows.
According to the research, cloud covers approximately 35% of the
earth’s surface in anytime (Ju and Roy, 2008), thereby extensively
limiting the collection of cloud/shadow-free data, particularly for
multitemporal image analysis. Cloud/shadow in remote sensing images
is a negative problem, which not only reduces image quality but also
obscures real information for subsequent applications. Therefore, re-
moving the cloud/shadow in satellite images is critical in improving

image quality before their subsequent applications.

1.1. Related works

In the past decades, many cloud/shadow removal approaches have
been proposed to reconstruct missing and degraded information. These
approaches can be divided into three categories: self-complementation-
based, multispectral-complementation-based, and multitemporal-com-
plementation-based methods (Chen et al., 2017). Self-complementa-
tion-based methods take full advantage of the information from cloud/
shadow-free regions in an image. The contaminated information of the
cloud/shadow regions is supplemented by propagating the geometrical
flow from the cloud/shadow-free regions. For instance, image in-
painting techniques have been used extensively for information re-
construction (Maalouf et al., 2009; Lorenzi et al., 2011; Shen et al.,
2014). However, self-complementation-based methods cannot re-
construct large-scale cloud/shadow regions, which are the actualities in
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optical remote sensing images.
To make full use of the auxiliary information, multispectral-com-

plementation-based methods reconstruct the degraded bands by uti-
lizing extra auxiliary clean bands (Zhang et al., 2002; Rakwatin et al.,
2009; Shen et al., 2011; Wang et al., 2005; Zhang et al., 2009; Lorenzi
et al., 2013; Li et al., 2019). For example, the missing data of moderate
resolution imaging spectroradiometer (MODIS) band 6 is reconstructed
on the basis of the strong correlation between MODIS bands 6 and 7
(Rakwatin et al., 2009; Shen et al., 2011). A haze-optimized transfor-
mation was proposed to rectify and compensate the thin cloud-con-
taminated visible bands of Landsat images (Zhang et al., 2002). Zhang
et al. (2009) proposed a geostatistical method to interpolate the DN
values of clouded pixels in remotely sensed multispectral images by
employing the ordinary cokriging method. Malek et al. (2018) recently
presented the strength of autoencoder networks (AE) to remove the
cloud in a multispectral image. In summary, these methods can re-
construct large-scale regions of the cloud/shadow and obtain satisfac-
tory results compared with self-complementation-based methods.
However, when large-scale cloud/shadow regions appear in all bands,
both self-complementation-based and multispectral-complementation-
based methods have the difficulty in reconstructing the information
because reference information is not sufficient (Chen et al., 2017).

Among the two categories, multitemporal-complementation-based
methods are widely used to remove the cloud/shadow in remote sen-
sing images because they can simultaneously capture the spatial,
spectral and temporal coherence. Satellite sensors can collect multi-
temporal acquisitions of remote sensing images in the same region.
Meanwhile, cloud/shadow varies with time node; thus, cloud/shadow-
contaminated regions vary in different time nodes. Melgani (2006,
2008) proposed an unsupervised contextual prediction process, which
efficiently used the spectral-temporal relationships to remove the cloud.
Lin et al. (2013) proposed an information cloning method to eliminate
clouds in multitemporal images, in which the changes in the land cover
over a short time period are assumed to be minimal. Thereupon, Lin
et al. (2014) again developed a patch-based information reconstruction
algorithm for removing cloud in an image. Cheng et al. (2014) offered a
method based on similar pixel replacement to remove clouds. The au-
thors used a multitemporal image as a guide to locate similar pixels,
and similar pixels were found by implementing a spatio-temporal
Markov random field global function. To obtain a continuous cloud-free
Landsat image, Chen et al. (2017) proposed a novel spatially and
temporally weighted regression method to reconstruct cloudy areas. A
multitemporal dictionary learning method was also proposed in Xu
et al. (2016) for cloud removal. In addition, many other multitemporal-
complementation-based methods are available to address the problem
in cloud removal (Tseng et al., 2008; Zhang et al., 2010; Li et al., 2015;
Li et al., 2016; Zhang et al., 2018). Majority of the existing multi-
spectral-complementation-based methods can achieve satisfactory re-
sults. However, a cloud/shadow-free auxiliary image should be selected
as a reference to guide cloud/shadow-free patches or to locate similar

pixels, which will remarkably depend on the availability of cloud/
shadow-free images (Chen et al., 2017).

In recent, by considering the cloud/shadow regions as missing in-
formation in an image, low-rank matrix and tensor completion based
methods are effectively used to reconstruct cloud/shadow-con-
taminated multitemporal images. Wang et al. (2016) developed a
temporally contiguous robust matrix completion model to remove
cloud and recover ground observation in satellite image sequences. This
model used the temporal correlations of the image and solved by using
augmented Lagrangian method with an inexact proximal gradient. An
adaptive weighted tensor completion method was also proposed in Ng
et al. (2017) to reconstruct remote sensing image with cloud coverage.
Ji et al. (2017) suggested a nonlocal tensor completion method for the
cloud removal of multitemporal remotely sensed images. Furthermore,
the classic matrix completion (Candès and Tao, 2010) and tensor
completion (Liu et al., 2013) also can be applied to cloud/shadow re-
moval in multitemporal remotely sensed images. If the cloud/shadow
locations are precisely provided, the low-rank matrix/tensor comple-
tion methods can efficiently reconstruct the cloud/shadow areas by
simultaneously exploring the spatial, spectral, and temporal informa-
tion.

1.2. Motivation

Although completion-based methods are popular and achieve sa-
tisfactory results in cloud/shadow removal, they also have several
disadvantages. First, these methods belong to non-blind approaches
because they require the cloud/shadow locations in the image.
However, identifying an excellent method to accurately detect the
cloud/shadow position is challenging. This phenomenon can be illu-
strated in Fig. 1, where Fig. 1(b) shows the degraded image and
Fig. 1(c) presents the cloud/shadow mask detected using the state-of-
the-art improved Fmask algorithm (Frantz et al., 2018). In the figure,
black portion denotes the cloud/shadow-free locations, white portion is
cloud locations, and gray portion indicates the cloud shadow locations.
Based on the results, we can observe that the locations of the shadow in
Fig. 1(b) (small green box) are not detected. In this case, completion-
based methods always have the difficulty to eliminate the shadow in
multitemporal images. Second, completion-based methods consider the
pixel values of the cloud/shadow areas as missing information in the
cloud/shadow areas. Generally, the areas that are covered by cloud/
shadow also contain the available information. Fig. 1(b) shows the
enlarged image of the shadow areas in the lower-right corner, and it
also illustrates that the shadow areas contain useful image structure and
texture. We cannot regard these areas as missing information and
should make the use of these information. Finally, when the mask areas
of thin cloud/shadow are the same in all temporal images, previous
matrix/tensor completion methods cannot reconstruct the images by
simply using the image low-rank prior. Therefore, the techniques in
improving the practicability of the method and making use of cloud/

Fig. 1. (a) and (b) represent the degraded image of two adjacent time nodes, (c) the cloud/shadow mask of (b), (d) the pixel values distribution of cloud-free and thin
cloud locations (blue box from (a) and (b)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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shadow information are the noteworthy problems.
In this paper, we propose a unified cloud/shadow detection and

removal method for multitemporal remote sensing images using a low-
rank sparsity decomposition framework to address the problems men-
tioned previously. In the proposed framework, the low-rank regular-
ization is used to constrain the image component given that it has
global correlations in spectral-temporal dimensions. The sparsity term
is employed to capture the global sparse distributional property of the
cloud/shadow component in the entire multitemporal images because
the proportions of the cloud/shadow in many scenes are relatively low.
The characteristics for low-rank image (surface-reflected) component
and sparse cloud/shadow component can be captured simultaneously.
Moreover, we adopt the spatial-spectral total-variation (TV) regular-
ization to preserve the continuity of the sparse cloud/shadow compo-
nent in each temporal image. An efficient alternating direction method
of multipliers (ADMM) algorithm is introduced to optimize the pro-
posed model. Finally, to better preserve the cloud/shadow-free in-
formation, a further step is to detect the sparse cloud/shadow locations
using a threshold method in the extracted cloud/shadow component.
Then, the information of the cloud/shadow-free locations is compen-
sated to the low-rank clean image. Fig. 2 presents the framework of the
proposed method for the blind cloud/shadow removal.

1.3. Contribution

The main contributions of this paper can be summarized as follows:

(1) We propose a unified convex optimization model spatial-spectral
TV regularized low-rank sparsity decomposition (TVLRSD) for the
joint cloud/shadow detection and removal of multitemporal sa-
tellite images. Compared to existing matrix/tensor completion-
based modeling methods, our method needn’t cloud/shadow de-
tection as preprocessing. Furthermore, our method is the first to
exploit and model the underlying characteristics and priors hidden
in the cloud/shadow component of time-series data.

(2) We design a low-rank regularization to model the high correlation
between the image component in spectral-temporal dimensions,
and sparse regularization and spatial-spectral TV regularization to
encode the spatial-spectral continuity of the cloud/shadow com-
ponent. An efficient threshold method is proposed to detect the
cloud/shadow from the sparse component, and the detected cloud/
shadow is utilized to improve the reconstruction accuracy of
TVLRSD.

(3) We testify our method with different sensors, different numbers of
spectral bands and temporal acquisitions, and different spatial

resolution of multitemporal satellite images. The whole cloud/
shadow detection and removal results demonstrate the effectiveness
and practicability of our approach.

The remainder of this paper is organized as follows. Section 2 de-
scribes the cloud/shadow degradation and reconstruction framework.
The proposed method for multitemporal remote sensing image cloud/
shadow detection and removal are discussed in Section 3. Section 4
presents the experimental results and discussions to demonstrate the
effectiveness of the proposed method. Finally, we conclude this paper in
Section 5.

2. Problem formulation

The observed cloud/shadow-contaminated multitemporal image
datasets can be regarded as a fourth-order tensor × × ×Rm n b t, where
m and n are the spatial sizes of the image, b is the number of spectral
bands in each time node, and t is the number of time nodes. To discuss
the low-rank sparsity decomposition framework better, we reshape the
fourth-order tensor as matrix ×Y Rmn bt , where each column represents
an image and each row denotes a pixel along all bands and time nodes.

In our work, we assume that the cloud/shadow-contaminated
multitemporal images Y consist of two components: clean image (sur-
face-reflected) and cloud/shadow. The cloud/shadow effect is ap-
proximated as additive noise. Thus, we can formulate the cloud/
shadow degradation model as

= + +Y X S N , (1)

where × ×X R S R,mn bt mn bt and ×N Rmn bt are the clean image
component, cloud/shadow component, and residual, respectively.

We formulate the degradation process due to the thick and thin
clouds and cloud shadows as the additive model. In this degradation
modeling, we can simultaneously consider various underlying char-
acteristics. It is common to approximate that thin cloud (or haze) is an
additive component to the radiance signal at the sensor from the phy-
sical perspective (Richter and Schläpfer, 2005). To provide a visual
example, Fig. 1(a) and (b) show two cloud/shadow-contaminated
images that are collected by two adjacent time nodes. Fig. 1(d) displays
the distribution pixel values of the cloud-free area in Fig. 1(a) and the
thin cloud (or haze) area in Fig. 1(b) (blue box in Fig. 1(a) and (b)). As
shown in Fig. 1(d), we can observe that the pixel values of the thin
cloud area are not constant, and the profile shape is similar to that of
the cloud-free version with large values. Thus the thin cloud areas
contain useful surface-reflected information with the additive compo-
nent of thin clouds. Meanwhile, the surface-reflected component in the

Fig. 2. The framework of the proposed method for blind cloud/shadow removal.
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shadow areas is smaller than that of the shadow-free version due to the
lack of a direct solar beam. We approximate the decrease as an additive
component with being negative. As shown in Fig. 1(b), the shadow
areas contain the image component owing to the diffuse solar flux. We
use such information as a hint to image restoration. The surface-re-
flected information is not visible at the locations covered by thick
clouds. We regard the difference between the thick-cloud-contaminated
image and the cloud-free version as the sparse component in our model.
This modeling is similar to sparse modeling based inpainting.

The first goal of our work is to simultaneously estimate the image
component X and the cloud/shadow component S from the cloud/
shadow-contaminated Y. However, this is a strong ill-posed inverse
problem for simultaneously solving X and S from Y. To address this ill-
posed inverse problem, we employ the regularization method which is
an efficient strategy to solve it. Thus, the separation model can be
generally formulated as

+ + = + +J X J S J N s t Y X S Nmin ( ) ( ) ( ), . . ,
X S N, ,

1 1 2 2 3 (2)

where 1 and 2 are two positive regularization parameters that are
employed to balance the three regularization terms. J X J S( ), ( )1 2 and
J N( )3 are three regularization terms, which depict the underlying prior
knowledge of the image component, cloud/shadow component, and
residual, respectively. N represents the residual, which is assumed to
obey the Gaussian distribution and specified as N F

1
2

2 , where · F is the
Frobenius norm. Then, we focus on exploring the prior knowledge of
the image and cloud/shadow components and design these priors with
the approximated regularization terms.

3. Proposed methodology

By considering the cloud/shadow areas as the missing information,
completion-based methods can be utilized to efficiently reconstruct the
image component. Due to the reason that multitemporal images have
strong correlation in spectral-temporal dimensions, the low-rank ma-
trix/tensor completion can be employed to reconstruct the information
in cloud/shadow areas. The low-rank completion methods by solving
the following model

=X s t X Ymin . . ( ) ,
X (3)

where (·) is the projection operator, and is the cloud/shadow-free
areas. Model (3) only considers the low-rank property of the clean
image and location information of the cloud/shadow. It fails to take full
advantage of the information hidden in the thin clouds and shadow
areas, and it needs to know the location in advance. To improve the
practicability, we compensate the deficiency of the completion-based
models in the low-rank sparsity decomposition framework, which can
simultaneously consider the characteristics of the image and cloud/
shadow components.

3.1. Preliminary regularization model of cloud/shadow removal

3.1.1. Low-rank sparse decomposition
(a) Low-rank prior of the image component X: As we know, multi-

spectral images have a strong correlation in spectral dimension (Chen
et al., 2018). In multitemporal images, the imaging target is the same
scene. The only difference is the wavelength of light varies in each
band, and the imaging time nodes are different. Thus, multitemporal
images have a strong correlation not only in the spectral dimension but
also in the temporal dimension. To illustrate the low-rank property of
multitemporal images, we plot the distribution of the singular values of
the image using a multitemporal Sentinel-2 dataset (see simulated da-
taset 1). Fig. 3(a) shows the obvious decaying trends of the curve,
which indicate the low-rank property of the image. To explore this high
spectral-temporal correlation of clean multitemporal images, we use
low-rank prior to describe the reshaped matrix X. Thus the

regularization term J X( )1 can be formulated as =J X X( )1 , where
=X X( )i i , and X( )i is the i-th singular value of X.

It is noteworthy that the cloud/shadow component has minimal
correlation in the temporal dimension because the density and location
of the cloud/shadow component are generally different in the temporal
dimension. We can expect that the low-rank constraint of X would fa-
cilitate the separation of the image and the cloud/shadow components.
Moreover, the low-rank prior is confirmed in Wang et al. (2016) for
efficiently removing the cloud.

(b) Sparse prior of the cloud/shadow component S: When the pro-
portions of cloud/shadow are relatively low in the entire multitemporal
images, the sparse prior can be naturally introduced to describe the
cloud/shadow component. To implement the sparse prior, 0-norm,
which is used to count the number of nonzero elements, is the best
choice. However, due to the nonconvexity and NP-hard problem of

0-norm, we use 1-norm to replace the 0-norm as a convex surrogate.
Thus, the regularization term for the cloud/shadow component S can be
designed as: =J S S( )2 1, where = = =S S| |i

mn
j
bt

i j1 1 1 , .
When each temporal image is contaminated by heavy cloud/

shadow, it seems that performing the sparse regularization is not
proper. However, other regularization terms help to distinguish the
cloud/shadow component, and we can adjust the parameter of the
sparsity term to tackle heavy clouds/shadows. Moreover, the cloud/
shadow component is intrinsically sparser than the image component in
most cases. If the entire image is covered by considerably heavy clouds/
shadows, accurately reconstructing the image component is remarkably
difficult or even impossible.

In summary, we can summarize the discussion of the prior and
regularization and obtain the low-rank sparse decomposition model as
follows:

+ + = + +N X S s t Y X S Nmin 1
2

, . . .
X S N

F
, ,

2
1 2 1

3.1.2. Spatial-spectral TV regularized low-rank sparsity decomposition
model

In the above, we explore that the cloud/shadow component has
sparse prior. However, the sparse prior is limited to explore the char-
acteristics when the cloud/shadow component is comparative heavy.
We need to explore another priors and design corresponding regular-
ization term for the cloud/shadow component. As we known, the cloud
component possesses a piece-wise smooth structure in the spatial do-
main (see Fig. 3(b)). Moreover, the cloud component is continuously
presented in the spectral dimension since the locations are the same in
the image. This phenomenon is similar to the foreground subtraction
problem, in which the cloud component is regarded as the foreground
in the image. The difference is that the cloud component is static,
whereas the foreground subtraction also presents moving stage. In Cao
et al. (2016), the authors explored the continuity characteristic of
foreground component. The cloud component also has the continuity
characteristic in the spectral dimension. It is noteworthy that the cloud
shadow also possesses this characteristic. To preserve the spatial piece-
wise smoothness and spectral continuity, we use a spatial-spectral TV
regularization (Chen et al., 2017; He et al., 2016; He et al., 2018) to
model the cloud/shadow component in each time node. By adding the
spatial-spectral TV regularization to cloud/shadow component, we can
formulate = + =J S S DS( ) i

t
i2 2 1 3 1 1, where Si is the cloud/shadow

component in the i-th time node, = + +DS D S D S D S| | | | | |i x i y i z i1 .
D D,x y, and Dz represent the differential operators of spatial horizontal,
spatial vertical, and spectral dimensions, respectively.

After fully analyzing the priors and regularization terms of X and S,
we can obtain the low-rank sparsity decomposition with the spatial-
spectral TV regularization model. By combining the regularization
terms of the image low-rank prior and cloud/shadow prior into the
regularization model (2), our final TVLRSD model can be formulated as
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+ + +

= + +
=

N X S DS

s t Y X S N

min 1
2

,

. . ,

X S N
F

i

t

i
, ,

2
1 2 1 3

1
1

(4)

where ,1 2, and 3 are three positive regularization parameters.
It is worth noting that the proposed model can fully capture the

spectral-temporal correlation of the image component, and the
smoothness and continuity of the cloud/shadow component.
Specifically, this model does not require the location information of the
cloud/shadow. By optimizing the image component, cloud/shadow
component and residual components alternatively, we can separate
them progressively to remove the cloud/shadow.

3.2. Image and cloud/shadow components separation using ADMM
algorithm

In model (4), we cannot directly separate the image component X
and the cloud/shadow component S from Y since there are three un-
known variables. To effectively separate these two components, we
employ the ADMM framework (Boyd et al., 2011) to optimize the
proposed TVLRSD model. The ADMM algorithm has also been widely
used for image processing tasks, such as image destriping (Chen et al.,
2017) and image deraining (Jiang et al., 2019). It can transform the
complex multi-variable optimization problem into several easily solved
subproblems. In the ADMM framework, we alternately optimize one
variable while fixing the other variables in an iterative manner.

The image and cloud/shadow components separation framework of
ADMM iterations is shown in Fig. 4. In the framework, the degraded
image is decomposed into low-rank image component and the sparse
cloud/shadow component. By using the ADMM algorithm, we fix the
cloud/shadow component and employ the low-rank prior (image sub-
problem in Fig. 4)) to extract the image component from the observa-
tion. When the image component is separated, the sparse and spatial-
spectral TV regularized priors are employed (cloud/shadow sub-
problem in Fig. 4)) to extract the cloud/shadow component from the
difference between the observation and the image component. By sol-
ving the subproblem via ADMM iterations, the image component and
the cloud/shadow component can be estimated step-by-step from the
observation, so as to achieve the detection and removal of cloud/
shadow simultaneously. The details of the optimized implementation
are presented in the supplementary material.

3.3. Cloud/shadow detection and information compensation

Although model TVLRSD can efficiently separate the image

component and the cloud/shadow component, it is inevitable that the
cloud/shadow-free information will be degraded by subtracting a
nonzero false cloud/shadow component from the surface-reflected
component in cloud/shadow-free areas. To improve the results of the
cloud/shadow removal, we propose a simple cloud/shadow detection
method and compensate the information of cloud/shadow-free areas as
much as possible.

In the first step, we have extracted the cloud/shadow component
(i.e., the sparse component S by ADMM algorithm). In the sparse
component S, the pixel values of cloud locations are positive and larger
than other cloud/shadow-free locations because of the high reflective
nature of clouds. The pixel values of cloud shadow tend to be negative
due to the decrease of global flux on the ground. Suppose the estimated
sparse component × ×S Ri

m n p from a certain time node, where m and n
are the spatial sizes of the image, and p is the number of spectral bands
in this time node, it can be separated into the addition of a positive
component and a negative component. The threshold procedures will
be executed to segment shadow and cloud locations, respectively. If the
positive component is larger than a threshold value, then we regard this
pixel as a cloud element. On the contrary, it is a shadow pixel when the
negative component is less than a threshold value. The cloud/shadow
detection step is summarized in detail in the supplementary material,
and a more detailed example will be presented in the experimental part
(see Fig. 14). After detecting the cloud/shadow locations in each time
node, the information of cloud/shadow-free locations is compensated to
the final result by replacing the low-rank image component X with the
original image Y in the cloud/shadow-free areas. We summarize the
two steps of blind cloud/shadow removal and information compensa-
tion in Algorithm 1. The framework of the proposed method is pre-
sented in Fig. 2.

4. Experiments and results

In this section, to demonstrate the performance of our proposed
method, we tested it in both simulated and real experiments over dif-
ferent multitemporal remote sensing images. We compared the results
with popular completion-based methods: the matrix completion (MC)
(Candès and Tao, 2010), the tensor completion method (HaLRTC) (Liu
et al., 2013), the temporally contiguous robust matrix completion
method (ALM-IPG) (Wang et al., 2016), and the adaptive weighted
tensor completion method (AWTC) (Ng et al., 2017). We reshaped the
multitemporal dataset × × ×Rm n b t into ×Y Rmn bt to perform the MC
and ALM-IPG methods. The four-order multitemporal dataset

× × ×Rm n b t was reshaped to three-order × ×Rm n bt dataset to per-
form the tensor-based completion methods HaLRTC and AWTC. For the

Fig. 3. (a) The distribution of the singular values of the Sentinel-2 dataset, (b) real cloud component.
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weights of three different unfoldings on HaLRTC method, we set them
to be 1/3 according to the authors’ rules in their paper.

Algorithm 1. TVLRSD with information compensation

1: Step 1: Perform ADMM algorithm of TVLRSD model to separate the three comp-
onents.

2: Output: Image component X, cloud/shadow component S, and residual N
3: Step 2: Perform cloud/shadow detection for each time node Si.
4: for each =k t1: do
5: Perform cloud/shadow detection.
6: endfor
7: Output: : cloud/shadow locations
Output: Recovered =X Y( ) ( ), where is a complement to

4.1. Simulated experiments

In the real experiments, it is hard to use quantitative analysis to
evaluate the performance of cloud/shadow removal without ground-
truth data and reference of cloud/shadow masks. We perform simulated
experiments to quantitatively evaluate the effectiveness of our method
with matrix/tensor completion methods for cloud/shadow removal and
information reconstruction.

4.1.1. Simulated datasets
In the simulated experiments, we have ground-truth clean remote

sensing images, and add different kinds of cloud/shadow to simulate
the degraded multitemporal images. The advantage of simulated ex-
periments is that we have ground-truth to evaluate the reconstruction
results of different methods. To test different types of optical satellite
sensors with different spatial resolutions, two multitemporal remote
sensing images were selected as the ground-truth datasets, i.e., Sentinel-
21 with 4 bands (NIR, red, green, and blue) at a ground sampling

distance (GSD) of 10m, and Landsat-82 with 3 bands (red, green, and
blue) at a GSD of 30m. The details of the two datasets are given in
Table 1.

4.1.2. Experimental setting
In this part, we mainly show the superiority of our method than

existed completion-based methods for reconstructing the information in
the cloud/shadow locations. It is worth noting that precise cloud/
shadow masks are given for completion-based methods. We simulated
different kinds of cloud and cloud shadow, and added them to the clean
multitemporal remote sensing images. Two factors, i.e., the feature
value and distribution of the cloud/shadow are taken into consideration
in the simulation. For the first Sentinel-2 dataset, we generated the
distributions of the cloud and cloud/shadow randomly for each tem-
poral image. We adopted different methods to generate the values of
the cloud and cloud/shadow. In case 1, the cloud component was si-
mulated by adding a constant value to the cloud areas as a toy example.
In case 2, we utilized a mask to extract the cloud component from the
real cloud data and then added the extracted cloud component to the
image. To demonstrate that our method can also efficiently remove
cloud shadow, in case 3, we also simulated the cloud shadow on the
basis of case 1. Meanwhile, in case 4, the cloud shadow was also added
on the basis of case 2.

To analysis the influence of the cloud/shadow distribution for the
final results, we added thin clouds in which the locations and shapes are
the same in all temporal images to the Landsat-8 dataset. The cloud/
shadow removal problem becomes challenging, since no com-
plementary (or cloud/shadow-free) information is available from other
temporal images when we only utilized the prior for the image com-
ponent. We investigate two cases (i.e., cases 5 and 6) by adding a
constant value and realistic clouds. Table 2 summarizes different set-
tings. To evaluate the performance of cloud/shadow removal results,
we used two quantitative indices, namely peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) (Wang et al., 2004), in the

Fig. 4. The framework of ADMM iteration for separating the image component and cloud/shadow component.

1 Sentinel-2 imagery is available at scihub.copernicus.eu/dhus/. 2 Landsat-8 imagery is available at https://espa.cr.usgs.gov/.
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simulated experiments. The larger PSNR and SSIM values mean better
cloud/shadow removal results. TVLRSD represents that we only employ
the ADMM algorithm to obtain the result. TVLRSDC represents the
proposed TVLRSD with information compensation guided by cloud/
shadow detection results in Algorithm 1.

4.1.3. Results on Sentinel-2 Dataset
Figs. 5 and 6 show the cloud removal results of time node 1 and time

node 2 under different comparison methods in cases 1 and 2, respec-
tively. From the results, HaLRTC failed to reconstruct the cloud regions
in these two cases as shown in Figs. 5(d) and 6(d). The reason is that the
correlation of the dataset is not effective in both two spatial dimensions,
thus the low-rank constraints of the two spatial dimensions degrade the
final results. MC, ALM-IPG, and AWTC can reconstruct the most of the
missing information covered by clouds, but the image details were
smoothed and distorted, which can be observed in the enlarge box of
Figs. 5 and 6. Moreover, the results of MC and ALM-IPG presented a
black block shown in Figs. 5(c) and (e). The main reason is that the

cloud is overlapped in all temporal images in this area. According to
Fig. 5(g), the proposed TVLRSDC method completely reconstructed the
cloud areas and preserved the original details in the image since the
proposed model can efficiently capture the prior information for both
the image and cloud components. Although the proposed method failed
to completely recover the information in Fig. 6(g), our result was also
superior to the completion-based methods because the comparison
methods obtained the blurring artifacts.

Figs. 7 and 8 show cloud/shadow removal results of case 3 and case
4, respectively. The results indicated that the completion-based
methods obtained the same observation results compared with cloud
removal cases. Moreover, these methods also cannot completely pre-
serve the original information in cloud/shadow areas, but they can
recover the texture information in these areas. The cloud shadow ex-
isted in the image only influenced the percentage rate of missing in-
formation, thus the results were similar to the cloud removal. Based on
the results shown in Figs. 7(g) and 8(g), the proposed TVLRSDC method
can efficiently reconstruct the information in cloud areas. Furthermore,
the proposed method eliminated the cloud shadow and preserved the
most of information even the locations of cloud shadow areas were not
provided.

The above visual comparisons have demonstrated the superiority of
the proposed TVLRSDC method for cloud/shadow removal. In the next,
we will show the quantitative evaluation of PSNR and SSIM values to
again demonstrate the efficiency of the proposed method. Table 3
presents the results of the PSNR and SSIM values in simulated

Table 1
Multitemporal image for simulated experiments.

Dataset Source Location GSD Image size Spectral Time nodes

Dataset 1 Sentinel-2 Tokyo 10m ×400 400 4 4
Dataset 2 Landsat-8 Munich 30m ×512 512 3 4

Table 2
The characteristic of the simulated cloud/shadow component in different settings.

Dataset Case Type Distribution Cloud Cloud shadow

Sentinel-2 Case 1 Constant value Different in different time nodes ×
Case 2 Real cloud Different in different time nodes ×
Case 3 Constant value Different in different time nodes
Case 4 Real cloud/shadow Different in different time nodes

Landsat-8 Case 5 Constant value The same in different time nodes ×
Case 6 Real cloud The same in different time nodes ×

Fig. 5. The time node 1 cloud removal results of Sentinel-2 data under case 1. (a) Clean, (b) simulated cloud image, (c) MC, (d) HaLRTC, (e) ALM-IPG, (f) AWTC, and
(g) TVLRSDC.
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experiments of Sentinel-2 data under four different cases, where the
bold values indicate the best results. Since there was a reference mask
in simulated experiments, we used the results of the combination of
TVLRSD with reference mask (TVLRSDR) as the upper bound of our
compensation method. In the table, we can observe that the evaluation
indices achieved by the proposed TVLRSDC were much higher than the
other completion-based methods in case 1 and case 3. In case 2, the
PSNR of our result was lower than those of completion-based methods
since the information compensation was not completely precise. How-
ever, the proposed method obtained better visual results as shown in
Fig. 6(g). It’s worth noting that the evaluation results of TVLRSDC were

much higher than that of TVLRSD, thereby demonstrating the effec-
tiveness of information compensation. Although TVLRSDC obtained
lower PSNR value than AWTC in case 4, the SSIM value of our method
was the highest among all the comparison methods. These results il-
lustrated that the proposed TVLRSD with information compensation
can preserve most of the details in the cloud/shadow areas. The
TVLRSDR results also illustrated that the proposed TVLRSD can re-
construct better information in the cloud/shadow areas.

4.1.4. Results on Landsat-8 dataset
Landsat-8 dataset mainly contains mountains, hills, and rivers.

Fig. 6. The time node 2 cloud removal results of Sentinel-2 data under case 2. (a) Clean, (b) simulated cloud image, (c) MC, (d) HaLRTC, (e) ALM-IPG, (f) AWTC, and
(g) TVLRSDC.

Fig. 7. The time node 3 cloud/shadow removal results of Sentinel-2 data under case 3. (a) Clean, (b) simulated cloud/shadow image, (c) MC, (d) HaLRTC, (e) ALM-
IPG, (f) AWTC, and (g) TVLRSDC.
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Figs. 9(a) and 10(a) show the simulated cloud images, where we can
observe that the image was seriously degraded by the simulated cloud
component. Figs. 9,10(b) and (d) show the results of the matrix-based
completion methods, and we can observe that the cloud regions cannot
be reconstructed completely. The results of the tensor-based completion
methods are shown in Figs. 9,10(c) and (e). With the help of another
two unfoldings, HaLRTC and AWTC reconstructed some artifact in-
formation. The proposed method, in contrast, can effectively re-
construct a lot of information in the cloud regions and preserve some
information in cloud-free regions as shown in Figs. 9,10(f). From these
visual results, we obtained the following observations. First, comple-
tion-based methods fail to reconstruct the information in the cloud
regions when the cloud lies in the same locations in all temporal
images. The main reason is that there are not auxiliary information in
the cloud locations, and completion-based methods only consider the
image low-rank prior in three dimensions. Second, our method can
efficiently tackle the above cloud problems since we simultaneously
consider the image component prior and cloud component prior. Thus
the iterative estimation manner of image and cloud components would
benefit from each other.

Table 4 presents the quantitative evaluation results for simulated
Landsat-8. In case 5, the proposed TVLRSDC method obtained the
highest values among the comparison methods. TVLRSDC achieved
lower PSNR values than the tensor completion based methods in case 6,

but we achieved the best SSIM value than the comparison methods.
These results indicated that the tensor completion methods cannot
preserve the structure in the cloud areas in these cases. The proposed
method better reconstructed the information in cloud regions, which
can be demonstrated by the upper limit result of our method TVLRSDR.
In case 5, the information compensation step greatly improved the
PSNR value. ALM-IPG obtains similar results as MC. The reason is that
ALM-IPG reduces to MC when the temporal continuity is not evident.

From the simulated experiments, we can draw the following con-
clusions. First, our proposed method demonstrated the best cloud/
shadow removal performance in most of the cases with different set-
tings. Second, the proposed TVLRSDC performed much better than the
other comparison methods particularly when the locations of the cloud
and cloud shadow are overlapped. This advantage is achieved by uti-
lizing the surface information underlying in the thin cloud and cloud
shadow of multitemporal images for the information reconstruction.

4.2. Real experiments

To demonstrate the performance and show the superiority that our
method needn’t cloud-shadow detection as preprocessing, we used
three multitemporal remote sensing datasets, which are severely con-
taminated by real cloud/shadow. Moreover, two additional real ex-
periments were reported in the supplementary material. These datasets

Fig. 8. The time node 4 cloud/shadow removal results of Sentinel-2 under case 4. (a) Clean, (b) simulated cloud/shadow image, (c) MC, (d) HaLRTC, (e) ALM-IPG, (f)
AWTC, and (g) TVLRSDC.

Table 3
Quantitative evaluation PSNR (dB) and SSIM results of Sentinel-2.

Case Index MC HaLRTC ALM-IPG AWTC TVLRSD TVLRSDC TVLRSDR

Case 1 PSNR 36.405 38.739 36.488 39.890 43.821 46.197 46.197
SSIM 0.9789 0.9688 0.9789 0.9777 0.9956 0.9980 0.9980

Case 2 PSNR 34.960 33.036 34.932 35.224 32.409 34.803 35.793
SSIM 0.9469 0.9114 0.9466 0.9468 0.9425 0.9659 0.9672

Case 3 PSNR 38.297 35.742 38.545 38.351 40.308 42.752 42.758
SSIM 0.9723 0.9456 0.9721 0.9721 0.9934 0.9960 0.9961

Case 4 PSNR 32.588 31.332 32.731 33.538 30.096 32.282 32.814
SSIM 0.9359 0.8898 0.9363 0.9380 0.9333 0.9583 0.9604
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were selected from different sensors, with different numbers of spectral
bands and temporal acquisitions, and different spatial resolution of
multitemporal satellite images.

4.2.1. Real datasets
Three real datasets were chosen to testify the performance of the

proposed method on the multitemporal images with different resolu-
tions and sensors. Two datasets were selected from Sentinel-2 over
Tokyo. One of the dataset was acquired in 2017 with a GSD of 10m
(Fig. 11) for bands 2, 3, 4, and 8, mainly containing the mountains,
roads, and village. The other Sentinel-2 dataset was also collected in
2017 with heterogeneous urban areas, and we use bands 5, 6, 7, 8A, 11,
and 12 with a GSD of 20m (Fig. 12). The third dataset was collected by
the SPOT-5 satellite sensor3 over the urban city of Beijing on 2015 with
GSD of 10m (Fig. 13), in which the band of 20m is upsampled into the
same spatial size of 10m. The details of the three datasets are listed in
Table 5.

4.2.2. Experimental setting
Our blind cloud/shadow removal method can be directly utilized to

process the three real datasets. However, the compared completion
methods need the locations of the cloud and cloud shadow in advance.
Therefore, we adopted the state-of-the-art improved Fmask algorithm
(Frantz et al., 2018) and the Sen2Cor tool (Louis et al., 2016) to detect
the cloud/shadow of the two Sentinel-2 images, respectively. For the
SPOT-5 dataset, the mask can be directly downloaded from the data
website, and it is detected by MAJA processor.4 These cloud/shadow
masks generated by different methods provided the prior information
for the compared completion methods. We compare these masks with

the ones detected by the proposed TVLRSDC to demonstrate the ad-
vantage of the proposed method. The HaLRTC method was not chosen
for comparison because the equal weights of three dimensions are not
suitable for cloud removal shown in simulated experiments.

4.2.3. Real experimental results
We selected one time node reconstruction result for comparison in

each dataset (more results are provided in the supplementary material).
Figs. 11–13 show the cloud/shadow removal results on time node 10,
time node 1, and time node 6 for the first Sentinel-2 dataset, the second
Sentinel-2 dataset, and the SPOT-5 dataset, respectively. As clearly
shown in (a) of each figure, the images were simultaneously degraded
by clouds and cloud shadows. The reconstructed results of different
methods are presented in Figs. 11–13(b)–(e). From the results, the
following results can be observed. First, as displayed in Fig. 11, the
completion-based methods failed to recover several shadow areas, and
our method can simultaneously remove the cloud/shadow and re-
construct the information in the image. The reason is that the improved
Fmask fails to detect these shadow areas, and our method is blind and
can automatically reconstruct the information by separating the clean
image and cloud/shadow components alternatingly. Second, in Fig. 12,
the completion-based methods can efficiently eliminate the shadow in
the image, but some discrete clouds left in the image. In contrast, the
proposed TVLRSDC better removes the cloud/shadow and preserves the
cloud/shadow-free information. This phenomenon illustrated that
Sen2Cor cannot detect the cloud locations completely. Finally, all
methods precisely reconstructed the information in cloud/shadow areas
in Fig. 13. This is because the mask for the SPOT-5 images is of high
quality. From these observations, we can conclude that the results of
completion-based methods heavily depend on the accuracy of the
cloud/shadow detection results. The proposed method achieved the
satisfactory cloud/shadow removal results in a stable manner for dif-
ferent sensors, resolutions, and cloud conditions, due to the fact that the
proposed method not only consider the image prior but also the cloud/

Fig. 9. The time node 4 cloud removal results of Landsat-8 under case 5. (a) Simulated cloud image, (b) MC, (c) HaLRTC, (d) ALM-IPG, (e) AWTC, (f) TVLRSDC.

Fig. 10. The time node 2 cloud removal results of Landsat-8 under case 6. (a) Simulated cloud image, (b) MC, (c) HaLRTC, (d) ALM-IPG, (e) AWTC, and (f) TVLRSDC.

Table 4
Quantitative evaluation PSNR (dB) and SSIM results of simulated Landsat-8.

Case Index MC HaLRTC ALM-IPG AWTC TVLRSD TVLRSDC TVLRSDR

Case 5 PSNR 18.142 26.319 18.142 26.387 24.917 34.859 34.895
SSIM 0.8145 0.8767 0.8144 0.8768 0.9452 0.9903 0.9904

Case 6 PSNR 14.501 23.021 14.501 23.037 20.953 22.440 25.158
SSIM 0.6049 0.7573 0.6049 0.7573 0.8055 0.8395 0.8915

3 SPOT-5 imagery is available at https://take5.theia.cnes.fr/atdistrib/take5/
client/#/home.

4 http://www.cesbio.ups-tlse.fr/multitemp/?p=6203.
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Fig. 11. Cloud/shadow removal results for the first real Sentinel-2 dataset on time node 10. (a) Cloud/shadow image, (b) MC, (c) ALM-IPG, (d) AWTC, (e) TVLRSDC,
and (f) estimated cloud/shadow component by TVLRSDC.

Fig. 12. Cloud/shadow removal results for the second real Sentinel-2 dataset on time node 1. (a) Cloud/shadow image, (b) MC, (c) ALM-IPG, (d) AWTC, (e)
TVLRSDC, and (f) estimated cloud/shadow component by TVLRSDC.
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shadow prior in multitemporal images.
To demonstrate the efficiency of our cloud/shadow extraction, we

present the cloud/shadow components estimated by the proposed
TVLRSDC method in Figs. 11–13(f). From Figs. 11–13(a), we can ob-
serve that the images were degraded by not only cloud but also large
areas of cloud shadows. By visually comparing the cloud/shadow
component and distributed locations of the cloud/shadow in the ob-
served image, we can observe that the clouds and cloud shadows were
successfully extracted. The results showed that the completion-based
methods cannot remove the clouds or shadows due to the fact that the
detection methods failed to precisely detect these areas. In comparison,
our method recovered the surface information in cloud/shadow areas in
a blind manner since the proposed TVLRSDC method can estimate the
cloud/shadow component accurately. Based on this good results, our
method can be widely applied to practical cloud/shadow removal
problems.

4.2.4. Cloud/shadow mask detection
To further analysis why our proposed method can achieve better

cloud/shadow removal results, we present the cloud/shadow detection
results via our method and other famous cloud/shadow detection tools.
Recently, many cloud/shadow detection methods have been proposed
(Frantz et al., 2018; Zhai et al., 2018; Li et al., 2017). In the real ex-
perimental results, we adopted improved Fmask (Frantz et al., 2018) to

detect the cloud/shadow in the first Sentinel-2 dataset, and utilized
Sen2Cor for the second Sentinel-2 dataset. Due to the fact that the
improved Fmask and Sen2Cor tool failed to detect some locations of the
clouds and cloud shadows, the completion-based methods failed in re-
constructing the missing information in these areas. However, the high-
precision cloud detection results in the SPOT-5 dataset helped these
completion-based methods successfully recover the cloud/shadow area.
Since our model unified the cloud/shadow detection and removal to-
gether, all the cloud/shadow areas were efficiently reconstructed.
Fig. 14 presents one illustration of the cloud/shadow location detection
from the sparse component S. Firstly, the spare component was divided
into two components, i.e., the positive component standing for the
clouds and the negative component for the cloud shadows. Secondly,
two thresholdings were utilized to segment the final cloud and shadow
components, respectively.

Fig. 15 shows the cloud/shadow mask detection results of three
different tools and our method for the three real datasets. From the
visual observation, the image of first Sentinel-2 dataset was severely
degraded by cloud/shadow. It can be observed that some cloud shadow
areas were not detected by the improved Fmask algorithm. We outlined
some examples in the green box of Fig. 15. In the second row, Sen2Cor
successfully detected the cloud shadow, but failed to detect some dis-
crete clouds. For the SPOT-5 dataset, all cloud/shadow locations are
covered in the reference mask, however, some cloud/shadow-free areas
were regarded as cloud/shadow. The last column of Fig. 15 presents the
cloud/shadow mask results of our method. Compared to the improved
Fmask method, the proposed method can detect clouds with higher
accuracy. For instance, the cloud shadow areas, where the improved
Fmask method failed to detect in the green box, were successfully de-
tected by the proposed method. Our method also demonstrated better
cloud/shadow detection results compared to Sen2Cor and the reference
provided for the SPOT-5 dataset. This advantage is achieved by

Fig. 13. Cloud/shadow removal results for the real SPOT-5 dataset on time node 6. (a) Cloud/shadow image, (b) MC, (c) ALM-IPG, (d) AWTC, (e) TVLRSDC, and (f)
estimated cloud/shadow component by TVLRSDC.

Table 5
Multitemporal image for real experiments.

Dataset Source Location GSD Image size Spectral Time nodes

Dataset 1 Sentinel-2 Tokyo 10m ×1000 1000 4 13
Dataset 2 Sentinel-2 Tokyo 20m ×1500 1500 6 10
Dataset 3 SPOT-5 Beijing 10m ×2000 2000 4 10
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exploiting the surface information under thin clouds and cloud shadows
in multitemporal images, which can help our model to iteratively se-
parate the surface information and cloud/shadow.

In summary, the proposed method can separate the low-rank clean
image and sparse cloud/shadow components. In addition, the detected
cloud/shadow locations with higher accuracy can further improve the
image quality obtained in the first step. From the above results, the
proposed blind cloud/shadow removal method achieves the best results
compared with the other state-of-the-art methods under investigation.

4.3. Discussion

We have proposed a unified convex optimization model for blind
cloud and cloud shadow removal and detection of multitemporal
images, which is different from previous completion related methods
(Candès and Tao, 2010; Liu et al., 2013; Wang et al., 2016; Ng et al.,
2017). For these completion related methods, they only considered the
image low-rank prior and regarded the cloud/shadow areas as missing
information. A number of simulated experiments were conducted to
demonstrate the superiority of our TVLRSDC method compared to the
state-of-the-art completion-based methods for information reconstruc-
tion and cloud/shadow detection. These observations can be found in
Figs. 5–10. The completion-based methods destroyed and blurred the
image details. In contrast, the proposed blind method successfully re-
constructed the missing information in these areas. This is due to the
fact that we consider the cloud/shadow prior and make full use of
degraded surface information in thin cloud and cloud shadow areas of
multitemporal images in our model. The detection of cloud/shadow can
further help the information compensation of cloud/shadow-free areas.

Our method is also different from the completion-based methods, in
which the cloud/shadow should be given in advance. That is to say, the
results of the completion-based methods heavily depended on the given
cloud/shadow mask. This phenomenon can be observed in real data
results shown in Figs. 11–13. In Figs. 11 and 12, the locations of cloud
and cloud shadow cannot be successfully detected by either improved
Fmask or Sen2Cor. Then, the completion-based methods failed to re-
construct these areas in the final results. From the results of our method
for real data, the cloud/shadow are successfully removed, and the in-
formation is reconstructed. In our framework, the low-rank regular-
ization was used to reconstruct the information in cloud/shadow areas,
and the sparse and TV regularizations were employed to extract the
cloud/shadow component. The image and cloud/shadow components
can be separated iteratively. Moreover, the cloud/shadow detection and

information compensation helped to preserve the cloud/shadow-free
information. Different from the previous mask detection works such as
(Frantz et al., 2018; Li et al., 2017), our method used a simple
thresholding strategy to detect the cloud/shadow mask shown in
Fig. 14. Compared to the masks extracted by improved Fmask and
Sen2Cor, our method achieved better cloud and cloud shadow detection
results as shown in Fig. 15. The simulated and real experimental results
demonstrated that our proposed method achieves better results stably
both in the information recovery and the cloud and cloud shadow de-
tection for different kinds of datasets.

The proposed method can perform satisfactory results in most of the
datasets, but there are some limitations. First, with the increment of
spatial size, spectral bands, and temporal dimension, the computation
cost and storage are too much. Second, if some specific areas are cor-
rupted by the thick cloud/shadow all the time, these kinds of thick
cloud/shadow are hard to be removed by our method, since in this case,
the thick cloud component will be regarded as the low-rank image
component. Third, it is very hard to find the perfect parameters for our
proposed method. Due to the suboptimal selection of the parameters,
there are still a few cloud/shadow-free areas that are destroyed and
regarded as cloud/shadow masks.

5. Conclusion

In this paper, we proposed a method to remove and detect the
cloud/shadow in multitemporal remote sensing images via the low-rank
sparsity decomposition framework. Different from previous cloud/
shadow removal methods, we simultaneously consider the character-
istics of the surface-reflected image component and the cloud/shadow
component. In the low-rank sparsity decomposition framework, the
image component and the cloud/shadow component can be estimated
iteratively. This strategy can benefit and complement each other. The
low-rank prior that models the spectral-temporal correlations of mul-
titemporal images can discriminatively separate the clean image and
the cloud/shadow component, whereas the sparse and spatial-spectral
TV regularization on the cloud/shadow component can help to isolate
the cloud/shadow from the image component. We designed an ADMM-
based algorithm to solve the proposed model. To prevent the de-
gradation in the cloud/shadow-free areas, we further developed a
thresholding method to detect the cloud/shadow areas to perform
image restoration only in the cloud/shadow areas. Compared with
completion-based methods in simulated and real experiments, the
proposed method achieved better cloud/shadow removal results.

Fig. 14. The framework of the proposed method for cloud/shadow mask detection.

Y. Chen, et al. ISPRS Journal of Photogrammetry and Remote Sensing 157 (2019) 93–107

105



Meanwhile, the proposed method can also obtain a competitive cloud/
shadow detection result compared with the state-of-the-art improved
Fmask algorithm and Sen2Cor tool.

In the future, we will try to incorporate physics-based priors into the
image decomposition framework to further enhance its capability for
cloud/shadow removal in multitemporal images. Moreover, by re-
garding the multitemporal images as four-order tensor, the tensor-based
optimization model will be considered in future work.
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