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Abstract—Mixed noise (such as Gaussian, impulse, stripe, and
deadline noises) contamination is a common phenomenon in
hyperspectral imagery (HSI), greatly degrading visual quality
and affecting subsequent processing accuracy. By encoding sparse
prior to the spatial or spectral difference images, total variation
(TV) regularization is an efficient tool for removing the noises.
However, the previous TV term cannot maintain the shared
group sparsity pattern of the spatial difference images of dif-
ferent spectral bands. To address this issue, this article proposes
a group sparsity regularization of the spatial difference images
for HSI restoration. Instead of using �1- or �2-norm (sparsity)
on the difference image itself, we introduce a weighted �2,1-
norm to constrain the spatial difference image cube, efficiently
exploring the shared group sparse pattern. Moreover, we employ
the well-known low-rank Tucker decomposition to capture the
global spatial–spectral correlation from three HSI dimensions.
To summarize, a weighted group sparsity-regularized low-rank
tensor decomposition (LRTDGS) method is presented for HSI
restoration. An efficient augmented Lagrange multiplier algo-
rithm is employed to solve the LRTDGS model. The superiority
of this method for HSI restoration is demonstrated by a series of
experimental results from both simulated and real data, as com-
pared with the other state-of-the-art TV-regularized low-rank
matrix/tensor decomposition methods.

Index Terms—Augmented Lagrange multiplier (ALM) algo-
rithm, group sparsity, hyperspectral image restoration, low-rank
tensor decomposition.
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I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) is collected by imag-
ing spectroscopy over hundreds of bands and has rich

spectral information from all bands compared with that of
color or multispectral images. Due to its high-spectral resolu-
tion, HSI has various applications in remote sensing, such as
classification [1], unmixing [2], and target detection [3]. HSI
is typically degraded by a variety of mixed noises in a real
scene because of facility restrictions and weather conditions
during the collection process [4]. The noise in HSI seriously
degrades the visual quality and affects further processing accu-
racy. Therefore, restoring the noisy HSI is an important issue
to address prior to subsequent applications.

During the past few decades, many different HSI restora-
tion approaches have been proposed to improve its quality.
A straightforward technique is to use a conventional 2-D
grayscale image and 1-D signal noise removal approaches for
HSI band-by-band [5] or pixel-by-pixel [6]. However, these
methods cannot achieve satisfactory restoration results because
they fail to make full use of the strong correlation among all
bands and adjacent pixels. To address this issue, more efficient
approaches have been proposed by combining HSI correlation
along the spatial–spectral directions. For example, utilizing
the difference in signal regularity across the spatial–spectral
modes, a spatial–spectral derivative-domain wavelet shrinkage
method has been proposed for HSI restoration [7]. In addition,
the sparse representation methods [8] have also been proposed
to efficiently encode the spatial–spectral information for HSI
restoration.

In real scenes, HSI is often degraded by a variety of
mixed noise during the collection process, such as Gaussian,
impulse, stripe, deadlines, and many unknown noises [4].
Recently, the robust principal component analysis framework
(RPCA) [9] has been widely utilized for mixed noise removal.
Typically, HSI is assumed to have the low-rank property
along the spectral dimension [10], [11]. Meanwhile, dead-
lines, stripes, and impulse noises have a sparse property [4].
Given these assumptions, classical low-rank matrix recov-
ery (LRMR) was first presented by Zhang et al. [4] for
HSI mixed noise removal. To improve the HSI restoration
performance of LRMR, many nonconvex low-rank matrix
approximation functions, such as γ -norm [12] and weighted
Schatten p-norm [13], [14], have been proposed to for-
mulate the low-rank approximation instead of the original
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Fig. 1. (a) Difference image of spatial horizontal dimension. (b) Difference image of spatial vertical dimension (zoom in for better visibility). (c) Histogram
distribution of (a). (d) Histogram distribution of (b).

rank minimization. Moreover, low-rank matrix factorization
was also applied for HSI mixed noise removal [15]–[17]
to avoid computation of singular value decomposition and
improve the efficiency. Low-rank regularization on the spectral
difference image [18] and superpixel-based subspace low-rank
representation [19] were proposed for HSI restoration. To take
full advantage of the deep convolution neural networks in
image processing, deep learning (DL)-based methods were
also widely applied to HSI restoration [20]–[22]. The low-
rank matrix-based methods need to reshape the original 3-D
HSI into a 2-D matrix and ignore the HSI spatial correlation.
Therefore, the low-rank tensor-based methods have been intro-
duced to describe the HSI low-rank property, including Tucker
decomposition [23], [24]; parallel factor analysis (PARAFAC)
decomposition [25], [26]; and tensor singular value decompo-
sition (t-SVD) [27], [28]. However, as presented in [29], the
low-rank regularization is not sufficient to describe the prior
spatial information.

Total variation (TV) regularization is a well-known tool
to preserve the local spatial piecewise smoothness in image
processing [30]–[33]. Therefore, many researchers have intro-
duced various types of TV regularization based on the
low-rank matrix/tensor decomposition framework to simul-
taneously explore the spatial and spectral priors for HSI.
First, He et al. [29] introduced band-by-band TV regular-
ization into the low-rank matrix factorization framework to
boost the restoration results. Subsequently, by expanding the
band-by-band TV regularization, spatial–spectral TV regu-
larization has been widely adopted to capture spatial and
spectral smoothness [34], [35]. For example, spatial–spectral
TV regularization with a weighted nuclear norm [36], local
low-rank regularization [37], spectral difference low-rank reg-
ularization [38], t-SVD [39], and low-rank Tucker decomposi-
tion [40]. Moreover, vectorial TV [41] and 3-D spectral–spatial
cross TV [42] have also been introduced to low-rank models
for HSI mixed noise removal. In summary, the combina-
tion of a low-rank tensor framework and spatial–spectral TV
regularization can achieve state-of-the-art results.

Although existing TV regularization with low-rank
matrix/tensor modeling has achieved satisfactory HSI restora-
tion results, it still poses one problem. Fig. 1 presents the
difference image and histogram distribution along the spectral
dimension for Washington DC Mall data in both spatial
dimensions. Fig. 1(a) and (b) shows the difference images

Fig. 2. Illustration of (a) sparsity and (b) group sparsity. The gray squares
represent the zero elements and the red squares represent the nonzero ele-
ments. In (a), the elements show a random distribution. In (b), the elements
show a group distribution.

of the entire scene. It was found that the elements of each
row approximately tend to be all zero or all nonzero and the
number of zero rows is much larger than that of the nonzero
rows, indicating a shared group sparse pattern for these
elements. Fig. 1(c) and (d) shows the histogram distribution
of the �2-norm value of each row (contains 191 numbers) for
Fig. 1(a) and (b), respectively. It is clear that most �2-norm
values are zero or near zero. Previous TV methods simply
adopted �1-norm to regularize the sparse prior of the spatial
difference images, but these methods cannot exploit the shared
row sparse structure of the difference images. The differences
between the sparsity and group sparsity are shown in Fig. 2.
From the figure, we can observe that Fig. 2(b) has an obvious
row sparse structure compared with the sparse structure as
shown in Fig. 2(a). Thus, this leads one considers the group
sparsity regularization instead of the sparsity regularization
to promote the inner group relationships among the spatial
difference images of the different bands.

In this article, we propose a group sparsity-regularized
TV combined with low-rank Tucker decomposition for HSI
restoration. We used group sparsity regularization, denoted
by �2,1-norm, to explore the shared sparse pattern of a dif-
ference image in both spatial dimensions, which is totally
different from the previous TV regularization [43]. Moreover,
a weighted strategy was also introduced to promote the group
sparsity along the spectral dimension. The proposed weighted
group sparsity term was embedded into the low-rank Tucker
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decomposition framework. The contributions of this article are
summarized as follows.

1) We proposed a weighted group sparsity regularization,
which is represented by �2,1-norm, to better capture the
shared sparse pattern of the difference images for differ-
ent bands in both spatial dimensions, which is expected
to improve the restoration results compared to those of
the previous TV methods.

2) We incorporated the weighted group sparsity term into
the low-rank Tucker decomposition model for HSI
mixed noise removal. Low-rank Tucker decomposition
was utilized to separate the desired HSI and preserve the
spatial and spectral correlation across all HSI bands.

3) We designed an augmented Lagrange multiplier (ALM)
algorithm to solve our weighted group sparsity-
regularized low-rank Tucker decomposition model; a
series of experimental results demonstrate the superi-
ority of the proposed method compared with the other
state-of-the-art methods based on the combination of TV
regularization and low-rank matrix/tensor decomposition
methods.

The remainder of this article is organized as follows. Some
tensor notations and preliminaries of tensors and related HSI
restoration methods are presented in Section II. Section III
introduces the proposed weighted group sparsity-regularized
low-rank tensor decomposition model and its optimization
procedure. A series of experiments with both simulated and
real data and discussions are reported in Section IV. Finally,
Section V concludes this article.

II. TENSOR NOTATIONS AND RELATED WORK

A. Notations and Preliminaries

In this section, we introduce some notations and prelimi-
naries for tensor. Tensor is a multidimensional data array. The
capitalized calligraphic letter was used to denote tensor data,
for example, Y . We used capitalized boldface letter to denote
matrices (2-D data), for example, Y. A vector (1-D data) was
represented as a lowercase boldface letter, for example, y, and
a scalar was represented as a lowercase letter, for example,
y. An N-dimensional tensor in a real number was denoted as
Y ∈ R

I1×I2×···×IN , and yi1,i2,...,iN is its (i1, i2, . . . , iN) element.
The fiber of a tensor was formed by fixing all but one index.

A 3-D tensor contains row, column, and tube fibers, respec-
tively, defined by yi:k, y:jk, and yij:. A 2-D section of tensor
was represented as a slice, denoted by fixing every index but
two. The lateral, horizontal, and frontal slides of a 3-D tensor
Y were represented by Y:j:, Yi::, and Y::k, respectively. Y(n)

was the mode-n unfolding of tensor Y ∈ R
I1×I2×···×IN , formed

by arranging the mode-n fibers as columns [44].
The calculation of the inner product for two tensors Y1

and Y2 was 〈Y1,Y2〉 = ∑
i1,i2,...,iN y1i1,i2,...,iN · y2i1,i2,...,iN .

The Frobenius norm of tensor Y was computed by ‖Y‖F =√〈Y,Y〉. Moreover, the �1-norm of tensor Y was calcu-
lated as ‖Y‖1 = ∑

i1,i2,...,iN |yi1,i2,...,iN |. The mode-n mul-
tiplication of the tensor and matrix was defined as (Y ×n

U)i1,...,in−1in+1,...,iN = ∑
in yi1,i2,...,iN · uj,in . The multilin-

ear rank of a tensor was a vector (r1, r2, . . . , rN), where

rn = rank(Y(n)), n = 1, 2, . . . , N. Please refer to [44] for a
more detailed introduction of tensors.

B. Problem Formulation

A contaminated HSI is typically degraded by additive mixed
noise, mostly containing Gaussian, impulse, stripe, and dead-
line noises [4]. Therefore, the HSI mixed noise degradation
model was formulated as follows:

Y = X + S + N . (1)

In model (1), Y is the noisy HSI; X is the latent clean HSI;
S denotes the sparse noise, mainly containing a mixture of
impulse, stripe, and deadline noises; and N is the Gaussian
noise. The four components Y,X ,S , and N are 3-D tensors
with the same size of m×n×b, where m×n denotes the spatial
size of each band and b denotes the number of spectral bands.
HSI restoration focuses on how to restore a latent image X
from an observed noisy image Y .

C. Low-Rank Restoration of HSI

Recovering X from noisy Y is a difficult ill-posed problem.
To address this problem, the prior regularization of different
unknown variables is necessary. Therefore, optimization of the
mixed noise removal problem can be formulated as follows:

min
X ,S

J1(X ) + λJ2(S) s.t. ‖Y − X − S‖2
F ≤ ε (2)

where J1(X ) and J2(S) are the regularization terms describing
the prior knowledge of the clean HSI X and sparse noise
S , respectively. λ is the positive regularization parameter and
ε is the Gaussian noise density variance. Typically, J2(S) is
assumed to be sparse regularization for the sparse noise [4],
that is, J2(S) = ‖S‖1. Next, we show how we investigated a
formula for the regularization term J1(X ).

According to the linear mixture model [10], HSI possesses
a strong correlation in the spectral dimension, indicating that
the matrix X(3) has a low-rank prior. Therefore, different types
of low-rank matrix approximation regularization are utilized to
explore the prior information of J1(X ).

The low-rank matrix restoration methods make the vec-
torization of all HSI bands. However, this step loses the
correlation of the spatial structures. Because HSI is a three-
order tensor, it is more reasonable to adopt tensor tools
to model it for preserving details and spatial structures.
Wang et al. [40] have claimed that HSI also has a specific cor-
relation in both spatial dimensions by observing the obvious
decaying trends of the singular value changes of X(1) and X(2).
To simultaneously aggregate the spatial–spectral correlation
of HSI in three dimensions, efficient Tucker decomposition
can be employed to constrain the clean HSI X , that is,
J1(X ) = ‖X −G×1 U1 ×2 U2 ×3 U3‖2

F . By choosing a proper
regularization parameter, the regularization model (2) is equiv-
alent to the following optimization problem under the low-rank
Tucker decomposition constraint:

min
X ,S

λ‖S‖1 s.t. X = G ×1 U1 ×2 U2 ×3 U3

‖Y − X − S‖2
F ≤ ε
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Fig. 3. Illustration of 3-D tensor Tucker decomposition.

where factorization matrices U1 ∈ Rm×r1 , U2 ∈ Rn×r2 , and
U3 ∈ Rb×r3 are orthogonal in both spatial modes and spectral
modes, respectively, and G ∈ Rr1×r2×r3 is called the core ten-
sor. The 3-D tensor Tucker decomposition is intuitively shown
in Fig. 3.

D. Total Variation-Regularized Low-Rank Matrix/Tensor
Restoration of HSI

As reported in [29], each HSI band can be considered as
a gray-level image and thus it has local piecewise smooth-
ness in the spatial dimension. Therefore, TV regularization,
first proposed in [30], has been widely introduced to the
low-rank matrix/tensor decomposition framework to simulta-
neously exploit the spatial and spectral prior information. The
related TV-regularized low-rank model can be formulated as
follows:

min
X ,S

J1(X ) + λ1‖X‖TV + λ2‖S‖1 s.t. |Y − X − S‖2
F ≤ ε

where J1(X ) is the different low-rank matrix/tensor HSI
approximation and ‖X‖TV is the HSI TV regularization. Until
now, various TV types, including band-by-band TV [29];
spatial–spectral TV [34], [39], [40]; and 3-D spectral–spatial
cross TV [42], have been introduced to describe the term
‖X‖TV . Among them, anisotropic spatial–spectral TV regular-
ization with the low-rank Tucker decomposition method [40]
has achieved the state-of-the-art HSI restoration results.

The combination of low-rank tensor decomposition with
spatial–spectral TV regularization [40] achieves satisfactory
HSI restoration results because it can simultaneously consider
the HSI global spatial–spectral correlation and spatial–spectral
smoothness. However, it still poses several problems. Band-
by-band TV and spatial–spectral TV-regularized-based models
make full use of the sparse prior of the spatial–spectral differ-
ence images, which usually use the convex �1-norm to depict
the sparse prior. Generally speaking, sparsity is a helpful con-
straint to promote the piecewise smooth structure of each
band. However, sparse prior only characterizes the number
of nonzero elements, ignoring the local group structure of the
nonzero elements. Thus, we remedied this deficiency to better
depict the prior of HSI and improve HSI restoration results.

III. PROPOSED GROUP SPARSITY-REGULARIZED

LOW-RANK TENSOR DECOMPOSITION MODEL

A. Group Sparsity Regularization

The mixed-norm regularizer has been widely used to exploit
the shared sparse pattern of HSIs [45], [46]. Fig. 2 shows

the sparse pattern and shared sparse pattern. The gray squares
represent the zero elements and the red squares represent the
nonzero elements in the image. From Fig. 2(a) and (b), we can
characterize both of them with sparsity regularization, because
the number of zero elements is larger than that of the nonzero
elements. However, the sparse pattern shown in Fig. 2(b) is dif-
ferent from that of Fig. 2(a). In Fig. 2(a), the nonzero elements
are randomly distributed. In contrast, the nonzero elements
shown in Fig. 2(b) present a shared row sparse pattern. This
shared sparse pattern is also known as group sparsity and has
been efficiently exploited by the convex mixed �2,1-norm [45].
Group sparsity has also proved to be useful in HSI process-
ing and application. For example, Iordache et al. [45] adopted
group sparsity to regularize the abundance of nearby pixels to
boost the unmixing performance. Chen et al. [47] introduced
group sparsity regularization to exploit the sparsity of stripe
components and achieved better destriping results than that
using sparsity regularization [48].

For HSI, the imaging scene of different bands is the same.
Band-by-band TV and spatial–spectral TV-regularized models
employ the �1-norm to constrain the difference image of each
band and explore the sparsity of the difference image from
both spatial and spectral perspectives. However, given that the
imaging scene of different bands is the same, the piecewise
smooth structure of different bands should also be the same.
That is to say, the difference images of the entire bands should
obey the group sparse structure along the spectral dimension.

As shown in Fig. 1, the shared group sparse pattern of
the spatial difference image occurs along the spectral dimen-
sion. Fig. 1(a) and (b) shows the spatial difference image
along the spectral dimension for a 191-band 256 × 256 pixel
after reshaping the 2-D difference image to a vector. From
Fig. 1(a) and (b), it can be observed that the zero elements
and nonzero elements approximately present the shared row
pattern along the spectral dimension, and the structure of the
visualization is similar to the group sparse pattern shown in
Fig. 2(b). Moreover, we count the histogram distribution of
the �2-norm value of all difference spectral vectors. From
the histogram distribution shown in Fig. 2(c) and (d), most
of the �2-norm values tend to be zero, indicating that most
rows tend to be all zeros. Based on this, we introduce a group
sparse regularization to constrain the spatial difference image
in which each spectral signature is arranged as a group. Thus,
the regularization term for J1(X ) can be modeled as follows:

J1(X ) = ‖DX‖2,1 (3)

where D is the two differential operators in the two spatial
dimensions Dx and Dy. Let X (i, j, k) is the pixel value at
(i, j, k) in the HSI; then, the two differential operators are
calculated as follows:

{
DxX (i, j, k) = X (i, j + 1, k) − X (i, j, k)
DyX (i, j, k) = X (i + 1, j, k) − X (i, j, k).

To promote group sparsity, we utilized a weighted group sparse
regularization to improve the group sparsity of the spatial dif-
ference image [49]. Thus, the regularization term (3) can be
rewritten as follows:

J1(X ) = ‖W 	 DX‖2,1
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and the weighted �2,1-norm of DX is formulated as

‖W 	 DX‖2,1 =
m∑

i=1

n∑

j=1

Wx(i, j)‖DxX (i, j, :)‖2

+
m∑

i=1

n∑

j=1

Wy(i, j)‖DyX (i, j, :)‖2.

B. Group Sparsity-Regularized Low-Rank Tensor
Decomposition Model

As in model (2), the key problem is to exploit the prior
knowledge and design the corresponding regularization term
for a clean HSI X . Based on the aforementioned analysis, we
found that the global spatial–spectral correlation of HSI can be
efficiently formulated using low-rank Tucker decomposition.
Moreover, we showed that the group sparse regularization of
the spatial difference image is more reasonable and efficient
than the popular TV regularization. Combining the Tucker
decomposition and the group sparsity regularization, we pro-
pose a weighted group sparsity-regularized low-rank tensor
decomposition (LRTDGS) for HSI restoration as follows:

min
X ,S,G,Ui

λ1‖W 	 DX‖2,1 + λ2‖S‖1

s.t. X = G ×1 U1 ×2 U2 ×3 U3, ‖Y − X − S‖2
F ≤ ε.

(4)

In our LRTDGS model, the priors of the clean HSI X
and sparse noise S are fully exploited. The low-rank Tucker
decomposition can maintain the spatial and spectral correla-
tions and the weighted group sparse constraint is utilized to
preserve the shared local smoothness in all bands. The �1-norm
is employed to isolate the sparse noise, and the Frobenius
norm is used to eliminate the Gaussian noise. Using an alter-
nate updating process, we gradually isolated the sparse noise,
removed the Gaussian noise from the noisy image, and sep-
arated the clean image. In the next section, we introduce an
efficient iterative algorithm to optimize the proposed LRTDGS
model.

C. Optimization

It is difficult to directly solve the variables X and S
from model (4). A popular algorithm based on ALM [50]
was utilized to efficiently optimize our HSI restoration
model LRTDGS. In the following text, we present the ALM
optimization steps in detail.

By introducing two auxiliary variables R and Q, it is clear
that model (4) is equivalent to the following:

min
X ,S,G,Ui,R,Q

λ1‖W 	 R‖2,1 + λ2‖S‖1

s.t. X = G ×1 U1 ×2 U2 ×3 U3, ‖Y − X − S‖2
F

< ε, X = Q, DQ = R.

Based on the ALM algorithm, we transformed the constraint
problem into an optimization of the following augmented
Lagrangian function:

Lβ

(X ,S,G, Ui,R,Q,Wj
)

= λ1‖W 	 R‖2,1 + λ2‖S‖1

+ < W1,Y − X − S > +β

2
‖Y − X − S‖2

F+ < W2,X

− Q > +β

2
‖X − Q‖2

F+ < W3, DQ − R >

+ β

2
‖DQ − R‖2

F

under the constraint of low-rank Tucker decomposition X =
G ×1 U1 ×2 U2 ×3 U3, UT

i Ui = I(i = 1, 2, 3), where < ·, · >

is the inner product of the two tensors; β is a positive penalty
parameter; and Wj(j = 1, 2, 3) are the Lagrange multipliers.
In the ALM framework, we alternately optimized one vari-
able while fixing the other variables in an iterative manner.
Thus, we transformed the difficult multivariable optimization
problem into more easily solvable subproblems. In the next
section, we present how each of these subproblems can be
solved.

1) The R subproblem is provided as follows:

min
R

λ1‖W 	 R‖2,1+ < W3, DQ − R >

+ β

2
‖DQ − R‖2

F

= arg min
R

λ1‖W 	 R‖2,1 + β

2

∥
∥
∥
∥DQ − R+W3

β

∥
∥
∥
∥

2

F
.

Let DQ+ (W3/β) = C, the closed-form solution of the
tube fibers of R is calculated by (see [51]) the following:

R(i, j, :) =

⎧
⎪⎨

⎪⎩

‖C(i,j,:)‖2− W(i,j)λ1
β

‖C(i,j,:)‖2
C(i, j, :), if W(i,j)λ1

β

< ‖C(i, j, :)‖2

0, otherwise.

(5)

2) G, Ui, and X Subproblems: By fixing the other variables,
the subproblems are as follows:

min
X=G×1U1×2U2×3U3

< W1,Y − X − S >

+β

2
‖Y−X−S‖2

F+ < W2,X−Q > +β

2
‖X−Q‖2

F.

We equivalently transformed the equation as

arg min
G,Ui

β

∥
∥
∥
∥G ×1 U1 ×2 U2 ×3 U3

− 1

2

(

Y − S + Q + W1 − W2

β

)∥
∥
∥
∥

2

F
. (6)

The Tucker decomposition factors G and Ui can be
efficiently solved by using the higher-order orthogonal
iteration (HOOI) algorithm [44]. When we obtained the
decomposition factors G and Ui, we then updated X as
follows:

X = G ×1 U1 ×2 U2 ×3 U3. (7)

3) The Q subproblem is optimized by minimizing the
following problem:

arg min
Q

β

2

∥
∥
∥
∥X − Q + W2

β

∥
∥
∥
∥

2

F
+ β

2

∥
∥
∥
∥DQ − R + W3

β

∥
∥
∥
∥

2

F
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which is a least squared problem and can be optimized
via the following linear equations system:

(I + DTD
)Q =

(

X + W2

β

)

+ DT
(

R − W3

β

)

where I denotes the unit tensor. In this article, the peri-
odic boundary condition was considered for Q, then
DTD possesses block circulant matrices with a circu-
lant block structure. The efficient fast Fourier transform
(FFT) can be employed to solve this equation as follows:

Q = ifftn

( B
β1 + β|fftn(D)|2

)

(8)

where B = fftn((X + (W2/β)) + DT(R − (W3/β)));
and fftn and ifftn are the fast 3-D Fourier transform
and its inverse transform. The division is also performed
elementwisely and | · |2 is the elementwise square.

4) S subproblem has the following form:

min
S

λ2‖S‖1+ < W1,Y − X − S > +β

2
‖Y − X − S‖2

F

= arg min
S

λ2‖S‖1+β

2

∥
∥
∥
∥Y − X − S+W1

β

∥
∥
∥
∥

2

F
.

By applying a soft-threshold shrinkage operator, the
S subproblem can be accurately solved using the
following:

S = Shrinkage
(

Y − X + W1

β
,
λ2

β

)

(9)

where Shrinkage(a, b) = sign(a)max(|a| − b, 0).
5) Multiplier Updating: According to the ALM algorithm,

we updated the Lagrange multipliers Wi(i = 1, 2, 3) as
follows:

⎧
⎨

⎩

W1 = W1 + β(Y − X − S)

W2 = W2 + β(X − Q)

W3 = W3 + β(DQ − R).

(10)

Moreover, the weight W used for the next iteration was
updated from the current solution of the formulation (5) [49]

W(i, j) = 1
∥
∥
∥(DQ + W3

β
)(i, j, :)

∥
∥
∥

2
+ eps

where eps is a small number used to avoid singularities.
1)–5) processes indicate one ALM iteration that transforms
the difficult multivariable optimization problem to more easily
solvable subproblems [i.e., 1)–5) subproblems]. Summarizing
the processes of steps 1)–5), we obtained the ALM algorithm
to solve the proposed HSI restoration model LRTDGS (4), as
shown in Algorithm 1.

D. Analysis of Computational Complexity

Suppose the size of the HSI input is m × n × b, we present
the computational complexity of the LRTDGS solution. The
updating of R and S subproblems is soft threshold shrink-
age operations; then, the total computational complexity of
R and S solvers is O(2mnb). The X , G, and Ui subprob-
lems are updated using the HOOI algorithm, which is needed
to implement the SVDs and tensor-matrix product operation.

Algorithm 1 Optimization Process for LRTDGS Solver
Input: Noisy image Y , regularization parameters λ1 and λ2,

estimated rank (r1, r2, r3) for Tucker decomposition, ε,
kmax, βmax, and ρ.

1: Initialize: Let X = Y , Q = R = W1 = W2 = W3 = 0,
k = 0, and β

2: while not coverged do
3: Compute R via (5).
4: Update G, Ui and X via (6) and (7).
5: Compute Q via FFT (8).
6: Update S via (9).
7: Compute the Lagrange multipliers W1, W2 and W3 by

(10).
8: Update the penalty parameter β = min{ρβ, βmax}.
9: Check the convergence condition ‖X k+1−X k‖F

‖X k‖F
≤ ε and

k < kmax.
10: end while
Output: The restoration result X .

For simplified analysis, we let r = r1 = r2 = r3; then,
the total computational complexity of HOOI is O(mnbr +
(m + n + b)r4 + r6) [52]. Moreover, FFT was employed to
optimize the Q subproblem, which needs O(mnb log(mnb))

calculations. Considering all subproblems, the overall com-
putational complexity of each iteration in algorithm 1 is
O(2mnb + mnbr + (m + n + b)r4 + r6 + mnb log(mnb)).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we will present extensive experiments based
on simulated and real datasets to evaluate the performances
of the proposed LRTDGS method. To better demonstrate the
superiority of the combination of low-rank tensor decom-
position and group sparsity regularization, we compared
the performance of our method to five other state-of-the-
art HSI restoration approaches. These approaches include
LRMR [4], the combination of low-rank matrix factorization
with TV regularization (LRTV) [29], the spatiospectral TV
model (SSTV)1 [35], weighted low-rank constraint with the
spatial–spectral TV regularization model (LSSTV) [36], and
anisotropic spatial–spectral TV regularization with low-rank
tensor decomposition (LRTDTV)2 [40]. For the parameter
selection of these methods in all experiments, we carefully
followed the authors’ suggestions in their papers to guarantee
optimal results. Before the experiments, the pixel values of
each band were scaled within the range of [0, 1]. All the exper-
iments were conducted in MATLAB R2018b using a laptop
of 32-GB RAM, with a Intel Core i7-8750H CPU@2.20 GHz.

A. Simulated Experiments

1) Experimental Setting: To show the robustness of the
LRTDGS method, we selected two clean HSI datasets for
the simulated experiments. The first clean HSI was the simu-
lated Indian Pines dataset, which was also used in [29], [36],

1https://sites.google.com/view/hkaggarwal/publications
2http://gr.xjtu.edu.cn/web/dymeng/3
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Fig. 4. Restoration results of all the comparison methods using band 224 of the Indian Pines data under case 1. (a) Original. (b) Noisy. (c) LRMR. (d) LRTV.
(e) SSTV. (f) LSSTV. (g) LRTDTV. (h) LRTDGS.

Fig. 5. Restoration results of all comparison methods using band 118 of the Indian Pines data under case 6. (a) Original. (b) Noisy. (c) LRMR. (d) LRTV.
(e) SSTV. (f) LSSTV. (g) LRTDTV. (h) LRTDGS.

and [40]. This data contains 145 × 145 pixels in the spatial
domain and 224 spectral bands. The HYDICE Washington DC
Mall data adopted in [4] and [35] was chosen as the second
dataset, with a size of 256 × 256 × 191. To simulate compli-
cated noise cases in a real scene, six different types of noise
cases were added to these two clean HSI datasets. A detailed
description of these cases can be presented as follows.

Case 1: The zero-mean Gaussian noise was added to all
bands, and the noise variance of each band was equal to 0.15.

Case 2: Different Gaussian noise variances with zero-
means were added to each band and the noise variances were
randomly selected within the range of [0, 0.2].

Case 3: Mixtures of Gaussian with impulse noises were
added to each band and the Gaussian noise was added in the
same manner as in case 2. Moreover, we added impulse noise
in different percentages to each band and the percentages were
randomly selected within the range of [0, 0.2].

Case 4: Mixtures of Gaussian with deadline noises were
added to the HSI data. On the basis of case 2, we chose 40% of
all bands and add deadline noise whose number was randomly
selected within the range of 3–10.

Case 5: Mixtures of Gaussian with stripe noises were added
to the HSI data. We added Gaussian noise in the same manner
as in case 2 to each band, and 40% of all bands were selected
in which to add stripe noise whose number was also randomly
selected from 3 to 10.

Case 6: Mixtures of Gaussian, impulse, deadline, and stripe
noises were added to the HSI data. Gaussian noise and impulse
noise were added just as in case 3. In addition, we severally
chose 20% of all bands in which to add deadline and stripe
noises whose numbers were randomly selected from 3 to 10.

In the following text, we evaluated the HSI restoration per-
formances of all comparison approaches from three perspec-
tives, that is, visual, quantitative, and qualitative comparisons.

2) Visual Comparison: For a visual comparison, we chose
two representative cases 1 and 6, to compare the performance
of the different methods. Figs. 4 and 5 show the restora-
tion results for bands 224 and 118 of the Indian Pines data

under these two cases, respectively. For a better visual com-
parison, we enlarged some areas in the image. As shown in
Figs. 4 and 5, LRMR, SSTV, and LSSTV cannot completely
eliminate the noise in the presented results, clearly observed
in the enlarged box. LRTV and LRTDTV provide satisfactory
restoration results compared to those of the other comparison
methods, completely removing all noises. However, the image
details cannot be preserved well shown in the enlarged box
of Figs. 4 and 5. Compared with the other methods as shown
in Figs. 4(h) and 5(h), it can be clearly seen that all of the
mixed noises are eliminated and the image edges and details
are effectively preserved in the restoration results, indicating
the superiority of the LRTDGS method for HSI restoration
in the Indian Pines dataset. The restoration performances of
cases 1 and 6 for the Washington DC Mall data are shown
in Figs. 6 and 7, respectively. Similar to the Indian Pines
dataset, the LRMR, SSTV, and LSSTV results still contain
some noises. LRTV, LRTDTV, and the proposed LRTDGS
achieve similar visual results in these two cases. However, the
image details are blurred by LRTDTV as shown in the enlarged
boxes of Figs. 6(g) and 7(g). In comparison, our LRTDGS
method simultaneously removes all noises and preserves the
most original details in the image. In summary, our method
achieves an obvious visual improvement for HSI restoration
using the Indian Pines dataset, the reason being that these data
possess a same local smoothness characteristic in all bands.
Moreover, the proposed method can also achieve a competi-
tive result compared with that of the other methods using the
Washington DC Mall dataset.

3) Quantitative Comparison: The aforementioned visual
comparison showed the effectiveness of our LRTDGS method.
In the following text, we describe employing five objective
quantitative evaluation indices to demonstrate the performance
of the proposed LRTDGS method in all simulated experi-
ments. These evaluation indices are the peak signal-to-noise
ratio (PSNR), structure similarity (SSIM) [53], feature sim-
ilarity (FSIM) [54], erreur relative globale adimensionnelle
de synthese (ERGAS), and spectral angle mapper (SAM).
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Fig. 6. Restoration results of all the comparison methods using band 161 of the Washington DC Mall data under case 1. (a) Original. (b) Noisy. (c) LRMR.
(d) LRTV. (e) SSTV. (f) LSSTV. (g) LRTDTV. (h) LRTDGS.

Fig. 7. Restoration results of all the comparison methods using band 155 of the Washington DC Mall data under case 6. (a) Original. (b) Noisy. (c) LRMR.
(d) LRTV. (e) SSTV. (f) LSSTV. (g) LRTDTV. (h) LRTDGS.

Fig. 8. PSNR, SSIM, and FSIM values of all bands of the different comparison approaches in cases 1 and 6. (a)–(c) Indian Pines dataset for case 1. (d)–(f)
Indian Pines dataset for case 6. (g)–(i) Washington DC Mall for case 1. (j)–(l) Washington DC Mall for case 6.

In our experiments, the PSNR, SSIM, and FSIM results are
the average values of those for all bands. The higher val-
ues indicate better restoration results for the PSNR, SSIM,
and FSIM evaluation indices. As for the ERGAS and SAM
indices, the lower values indicate better quality restoration
results.

Table I presents the five quantitative evaluation indices of
all the comparison methods under the aforementioned six dif-
ferent noise cases for the Indian Pines and the Washington
DC Mall datasets. The highlighted bold value of each index
is the best result among all the comparison methods. From
the results, because of the combination of the low-rank ten-
sor decomposition with spatial–spectral TV regularization,
LRTDTV obtained better results than those of the other
matrix-based format methods due to the fact that low-rank
tensor decomposition can capture the global correlation in
the spatial–spectral dimensions. Compared with the matrix-
based format methods and LRTDTV, the proposed LRTDGS
achieves the best performance for all evaluation indices under
nearly all cases. This is because the traditional TV regular-
ization fails to explore the global structure of the difference
images, but our model remedies this deficiency. Particularly,

our method achieves an improvement in all metrics for the
Indian Pines dataset. In the Washington DC Mall dataset, the
proposed method can also achieve better results compared to
those of all comparison methods. This is because the Indian
Pines dataset contains the same local smoothness characteris-
tic in all bands, which can be efficiently captured using group
sparsity to constrain the difference images. In summary, the
quantitative comparison of the six different noise cases for the
two clean datesets shows the effectiveness of our LRTDGS
method.

4) Qualitative Comparison: In the aforementioned discus-
sion, we presented the average value of the evaluation indices
to evaluate the performance. Fig. 8 shows the curves of PSNR,
SSIM, and FSIM evaluation indices for each band based on
cases 1 and 6. As presented in Fig. 8(a)–(f), the proposed
LRTDGS method achieves the highest PSNR, SSIM, and
FSIM values in all bands of the Indian Pines dataset. This
may because the group sparsity constraint of the difference
image can better preserve the most details in each band. As
shown in Fig. 8(j)–(l), our method did not achieve the best
evaluation in every each band, but we achieved the average
optimum in all bands.
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TABLE I
QUANTITATIVE COMPARISON OF ALL COMPARISON METHODS UNDER THE AFOREMENTIONED SIX DIFFERENT

NOISE CASES FOR THE INDIAN PINES AND WASHINGTON DC MALL DATASETS

Furthermore, we present the spectral signatures of the
restoration results compared with the original image to further
report the qualitative comparison. To show the performance

of the different methods in edge preservation, we selected
an edge pixel of location (30, 74) and showed the spec-
tral signatures between the restored image and the original
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Fig. 9. Difference between the original spectrum and the restoration results of pixel (30, 74) on the Indian Pines image and pixel (10, 162) on the Washington
DC Mall image under cases 1 and 6. From top to bottom are the Indian Pines dataset for case 1, Indian Pines dataset for case 6, Washington DC Mall for
case 1, and Washington DC Mall for case 6. (a) Noisy. (b) LRMR. (c) LRTV. (d) SSTV (e) LSSTV. (f) LRTDTV. (g) LRTDGS.

Fig. 10. Restoration results of all comparison methods for band 139 of the real Urban dataset. (a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LSSTV.
(f) LRTDTV. (g) LRTDGS.

Indian Pines dataset. Furthermore, we selected a smooth pixel
of location (10, 162) for illustration in the Washington DC
Mall. Fig. 9 shows the spectral signature difference under
noise cases 1 and 6. It can be clearly observed that the
proposed LRTDGS method achieves the signatures most sim-
ilar to the originals. LRTDTV also achieved better results in
the comparison of the Washington DC Mall dataset, because
the low-rank tensor decomposition can efficiently perverse the
spatial–spectral correlation.

B. Real Experiments

In the simulated experiments, we showed the performance
of our proposed LRTDGS method in a variety of noise
cases. In the following text, two datasets were employed
to illustrate the effectiveness of our method in the real-
world. These two datasets are the Hyperspectral Digital
Imagery Collection Experiment (HYDICE) urban dataset3 and
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

3http://www.tec.army.mil/hypercube

Indian Pines dataset.4 As a preprocessing, the pixel value of
each band was normalized to [0, 1].

1) HYDICE Urban Dataset: The HYDICE Urban is a pop-
ular dataset and is extensively applied to HSI restoration
experiments. The tensor size of this data is 307 × 307 × 210
and is severely contaminated by the Gaussian noise, deadlines,
stripe noise, water absorption, atmosphere, and some unknown
noises. For succinctness, we selected two typical bands to
present the restoration results of the different approaches.
Figs. 10 and 11 show the restoration results of bands 139
and 207 in this data, respectively. From Figs. 10(a) and 11(a),
one can see that these two bands are completely contaminated
by a variety of noises, including Gaussian, stripe, and dead-
lines noises. After denoising using the different HSI restoration
methods, the noise is obviously removed. As shown in Fig. 10,
the LRMR, LRTV, SSTV, and LSSTV methods cannot elimi-
nate the stripes in the results, as observed in the enlarged box
on the image. LRTDTV can obtain a better visual result than
that of the other methods, but still a few stripes existed in the
image as shown in Fig. 10(f). Moreover, LRTDTV changes the

4https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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Fig. 11. Restoration results of all comparison methods for band 207 of the real Urban dataset. (a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LSSTV.
(f) LRTDTV. (g) LRTDGS.

Fig. 12. Horizontal mean profiles of band 207 for the real Urban dataset. (a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LSSTV. (f) LRTDTV. (g) LRTDGS.

Fig. 13. Restoration results of all comparison methods for band 150 of the real Indian Pines dataset. (a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LSSTV.
(f) LRTDTV. (g) LRTDGS.

Fig. 14. Restoration results of all comparison methods for band 220 of the real Indian Pines dataset. (a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LSSTV.
(f) LRTDTV. (g) LRTDGS.

image contrast in the restoration result as shown in Fig. 10(f)
because the left and right sides of the image are brightened
compared to those of the other results. As shown in Fig. 11,
the LRMR, LRTV, SSTV, and LSSTV methods also fail to
eliminate the stripes. LRTDTV and our method can efficiently
eliminate the stripes and other noises, but the LRTDTV result
is smoothed in the image. By combining the low-rank tensor
decomposition with group sparsity regularization, the proposed
LRTDGS method completely removes all mixed noises and
preserves the image detail as shown in Figs. 10 and 11(g).

To clearly illustrate the restoration results, the horizontal
mean profiles of band 207 for the Urban dataset are shown
in Fig. 12. The vertical axis denotes the mean digital number
value of each row and the horizontal axis represents the row
number. As shown in Fig. 12(a), many fluctuations occur in
the curves because of the effects of stripes and other noises.
It can be observed that the fluctuations are largely reduced
using the different methods as shown in Fig. 12(b)–(g). As
shown in Fig. 12(b)–(e), some minor fluctuations also remain
in the curve, indicating the stripes in the image. This is

consistent with the restoration results shown in Fig. 11(b)–(e).
Fig. 11(f) shows the smoothed result of LRTDTV, which can
also be confirmed from Fig. 12(f). In comparison, the proposed
method achieves more reasonable mean profile results as
shown in Fig. 12(g).

2) AVIRIS Indian Pines Dataset: The second dataset is
the AVIRIS Indian Pines with the size of 145 × 145 × 220.
Some bands in this dataset are seriously degraded by mixed
Gaussian and impulse noises. Similar to the Urban data, we
also chose two typical noise bands to display noise removal
results. The restoration results of bands 150 and 220 in this
dataset are shown in Figs. 13 and 14, respectively. As shown
in Fig. 13(a), the band 150 image is severely contaminated by
noise and the information of this band is completely corrupted.
Fig. 14(a) shows that this band is also seriously corrupted
by noise, and we cannot find only useful information. From
the results, all methods can remove most of the noises and
restore the image structure. However, the comparison meth-
ods cannot completely eliminate the noise, and the image
details are destroyed, as shown in the visual results of Fig. 13.
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Fig. 15. Horizontal mean profiles for band 150 using the real Indian Pines dataset. (a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LSSTV. (f) LRTDTV.
(g) LRTDGS.

TABLE II
BLIND ASSESSMENT INDEX Q-METRIC COMPARISON ON THE REAL DATA

As shown in Fig. 14, the results of LRMR, LRTV, SSTV,
and LSSTV methods still contain some noise and the image
structures are destroyed. LRTDTV can efficiently remove
the noise but it oversmooths the image and changes the
contrast as shown in Fig. 14(f). Compared with the afore-
mentioned TV regularization methods, the proposed LRTDGS
performs the best in removing noise and preserving edges and
local details.

Fig. 15 shows the horizontal mean profiles of band 150 for
this dataset. From the curves, one can also see that the com-
parison approaches cannot remove all the noises because some
fluctuations occur in their results. LRTDTV and LRTDGS
obtain better smoothed curves than those of the other methods.
Finally, the proposed LTTDGS achieved better visual results
compared to those of LRTDTV. We employed one nonrefer-
ence image assessment index Q-metric [34] to evaluate the
results of real datasets. Table II lists the nonreference index
values of the real data test. It can be found that the proposed
method obtains the best evaluation results.

C. Discussion

In our LRTDGS model, there are several parameters that
need to be discussed, including two regularization parame-
ters λ1 and λ2, one penalty parameter β, and Tucker rank
(r1, r2, r3) among the three HSI modes. Because the proposed
method is similar to LRTDTV [40], the parameters β and
Tucker rank (r1, r2, r3) are set as the same as those of
LRTDTV for a fair comparison. Thus, we first initialized
β = 10−2 and then updated it as β = min(ρβ, βmax), where
ρ = 1.5 and βmax = 106. For the Tucker rank (r1, r2, r3), we
adopted the same strategy that r1 and r2 are set as 80% of
spatial size, respectively. In our simulated Indian Pines data,
the value of the third-mode r3 was set to 10 as recommended
by LRTDTV and we set r3 as 5 for the Washington DC Mall
dataset. In the real data experiments, the HSI subspace method
HySime [55] was utilized to estimate r3.

To provide a strategy for the determination of regulariza-
tion parameters λ1 and λ2, we provided sensitivity analyses
for these two parameters. For the parameter λ2 of the sparse
term, we set it to λ2 = c/

√
mn, where c is a tuning parameter.

TABLE III
QUANTITATIVE COMPARISON OF LRTDGS WITH AND

WITHOUT WEIGHT ON THE INDIAN PINES DATASET

We selected cases 1–6 from the simulated Indian Pines data
experiment to provide overall sensitivity analyses of λ1 and λ2;
the average PSNR was used as the evaluation index. Fig. 16
shows the change in PSNR values with respect to these two
regularization parameters under different noise cases. The val-
ues of λ2 shown in the figure represent the change of parameter
c. From the figures, it can be seen that the change trends of
the PSNR values are similar in the different cases, indicat-
ing that the regularization parameters are robust for different
noisy cases. Moreover, we found that the PSNR values of the
LRTDGS method are relatively better when λ1 changes from
0.1 to 1 and the value of c is within the range of [50, 1000];
thus, we suggest that the parameters λ1 and c are separately
chosen from the aforementioned range according to different
noise degrees.

Subsequently, we present a numerical analysis for the con-
vergence of the proposed LRTDGS method. Because of the
nonconvexity of Tucker decomposition, our LRTDGS solver
is a nonconvex optimization problem. The strategy of updating
the penalty parameter β in each iteration has been generally
employed in the ALM-based optimization, which can pro-
mote convergence of the algorithm [50], [51]. However, it is
difficult to theoretically prove the convergence of the algo-
rithm for the nonconvex problem. Thus, the relative change
[(‖X k+1 −X k‖F)/(‖X k‖F)] is employed to empirically illus-
trate the algorithm convergence. Fig. 17 shows the curves of
relative change under six different noise cases in the simulated
Indian Pines dataset. From the curves, one can clearly see that
the relative change value suddenly increases at the beginning,
and then converges to zero as the iteration number increases,
indicating the convergence of the proposed LRTDGS.

To show the effectiveness of weights for group sparsity con-
straint, we compare the proposed method with the approach
that without the weighted strategy. The proposed method with-
out weighted strategy is denoted as LRTDW. From Table III,
we can observe that the proposed method with the weighted
strategy achieves better results than that without the weights.

Finally, to further demonstrate the advantage of our
proposed method, we selected one state-of-the-art DL method
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Fig. 16. Sensitivity analysis between parameters λ1 and λ2 using the simulated Indian Pines dataset. (a)–(f) Cases 1–6.

Fig. 17. Relative change values [(‖X k+1 − X k‖F)/(‖X k‖F)] versus the iteration number of the LRTDGS solver in the simulated Indian Pines dataset.
(a)–(f) Cases 1–6.

TABLE IV
QUANTITATIVE COMPARISON OF LRTDGS WITH HSID-CNN

IN THE WASHINGTON DC MALL DATASET

HSID-CNN [20] for comparison. Since HSID-CNN was
mainly designed for Gaussian noise removal, and the model of
HSID-CNN was trained on the Washington DC Mall dataset,
we adopted cases 1 and 2 simulated experiments on the
Washington DC Mall dataset for a fair comparison. Table IV
lists the quantitative comparison between LRTDGS and HSID-
CNN in the two simulated experiments. It can be observed
that our LRTDGS obtains better results than HSID-CNN from
quantitative evaluation results.

V. CONCLUSION

In this article, we proposed a group sparsity-regularized
low-rank tensor decomposition method for HSI restoration. In
this method, group sparsity regularization was utilized to better
exploit the shared sparse pattern of the difference image along
the spectral dimension and remove Gaussian noise. Moreover,
the global spatial–spectral correlation of clean HSI among all
bands was described via low-rank tensor decomposition, which
can aid in isolating the sparse noise from the clean HSI. We
adopted the ALM method to optimize the proposed LRTDGS
model, and both simulated and real data experiments validated
the efficiency of our proposed LRTDGS method.

In the future, we will attempt to exploit more potential prior
for the difference image to further improve the HSI restora-
tion results. In addition, the combination of DL ideas [20],
[21], [56] and tensor models is a promising topic for HSI
restoration.
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