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Abstract— Hyperspectral image (HSI) denoising is a
fundamental problem in remote sensing and image processing.
Recently, nonlocal low-rank tensor approximation-based denois-
ing methods have attracted much attention due to their advantage
of being capable of fully exploiting the nonlocal self-similarity
and global spectral correlation. Existing nonlocal low-rank tensor
approximation methods were mainly based on two common
decomposition [Tucker or CANDECOMP/PARAFAC (CP)]
methods and achieved the state-of-the-art results, but they are
subject to certain issues and do not produce the best approxi-
mation for a tensor. For example, the number of parameters for
Tucker decomposition increases exponentially according to its
dimensions, and CP decomposition cannot better preserve the
intrinsic correlation of the HSI. In this article, a novel nonlocal
tensor-ring (TR) approximation is proposed for HSI denoising
by using TR decomposition to explore the nonlocal self-similarity
and global spectral correlation simultaneously. TR decomposition
approximates a high-order tensor as a sequence of cyclically
contracted third-order tensors, which has strong ability to
explore these two intrinsic priors and to improve the HSI
denoising results. Moreover, an efficient proximal alternating
minimization algorithm is developed to optimize the proposed
TR decomposition model efficiently. Extensive experiments on
three simulated data sets under several noise levels and two real
data sets verify that the proposed TR model provides better
HSI denoising results than several state-of-the-art methods in
terms of quantitative and visual performance evaluations.

Index Terms— Denoising, hyperspectral image (HSI), nonlocal
self-similarity, tensor-ring (TR) decomposition.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) is acquired by imaging
spectroscopy over hundreds of bands. This provides
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richer spectral information than color images, which is con-
ducive to the fine description of real scenes. However, due
to the sensor instability, photon effects, calibration error, and
physical mechanism, an HSI is unavoidably contaminated by
noise during the imaging process [1]. The noise in the HSI
not only destroys the image vision but also influences the
succeeding application tasks, such as image fusion [2], [3] and
unmixing [4]. Therefore, noise removal from the HSI is a vital
topic in the areas of remote sensing and image processing.

Recently, many HSI denoising approaches have been pro-
posed, and they can be approximately grouped into three cate-
gories: 2-D image denoising-based methods, 3-D tensor image
denoising-based methods, and nonlocal tensor approximation
denoising-based methods. The 2-D image denoising method
is a classical approach in image processing. The related 2-D
approaches, such as total variation (TV) methods [5], [6]
and sparse representation [7], can be directly extended to
process the HSI separately band by band. These methods can
effectively remove low-level noise. However, when the noise
is strong, these methods cannot achieve satisfactory denoising
results. To remove the different intensities of noise better,
the 2-D extended methods were proposed that group similar
local patches in the image and achieve better results. These
methods include nonlocal sparse representation and low-rank
matrix approximation methods [8]–[12]. However, they fail
to consider the intrinsic characteristics of global spectral
correlation in the HSI, resulting in the spectral distortion of a
denoised image. By considering the spectral correlation in the
HSI, many researchers have employed low-rank regularization
to the HSI by reshaping and stacking all images into a
matrix [13]–[19]. Moreover, to avoid computation of singular
value decomposition and improve the efficiency, low-rank
matrix factorization was also applied to spectral correlation
depiction for HSI noise removal [20]–[24]. These methods can
effectively preserve the spectral information in the denoising
process but fail to preserve the spatial structure.

An HSI is a stack of several 2-D images, and it contains
three dimensions: one spectral dimension and two spatial
dimensions. Thus, it can be modeled as three-order tensor data.
Naturally, tensor-based models can improve the denoising
results, because they can fully capture the spatial–spectral
correlation of the HSI. There are three kinds of tensor
decompositions employed for image denoising: Tucker decom-
position [25]–[29], CANDECOMP/PARAFAC (CP) decom-
position [1], and tensor singular value decomposition [30].
The advantages of these three tensor decomposition models
are that they can simultaneously explore the spatial–spectral
correlation between the HSIs within all the bands and better
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Fig. 1. Framework of the proposed HSI denoising method.

maintain the spatial–spectral structure in the image. However,
the mentioned tensor-based methods ignored the nonlocal
self-similarity prior in HSI denoising [31], which is an impor-
tant prior for improving the denoising performance.

Nonlocal self-similarity indicates the fact that there are
many repeated local patterns across the HSI, and the strong
correlation exists not only in spectral dimension but also in the
nonlocal dimension by grouping the similar patches. The non-
local similar patch group processing can significantly help the
reconstruction of the degraded image [10]. To take full advan-
tage of the nonlocal self-similarity prior in HSI denoising,
many nonlocal-based HSI denoising methods have been pro-
posed [31]–[36]. As shown in Fig. 1, nonlocal-based methods
try to segment the image into overlapping patches and cluster
the similar patches into groups. In [37], the similar nonlocal
groups are denoised by a Wiener filter. Peng et al. [31] first
proposed a tensor dictionary learning (TDL) method to process
nonlocal similar groups, which could fully capture the nonlocal
self-similarity and global spectral low-rank priors. On the
basis of the TDL architecture, many state-of-the-art nonlocal
tensor-related approaches were proposed for HSI denoising,
including the intrinsic tensor sparsity (ITS) measure method
[32], [35] and the hyper-Laplacian regularized unidirectional
low-rank tensor recovery problem (LLRT) [33]. With the ITS
method, it was thought that the nonlocal group tensors should
obtain the property of Tucker and CP decompositions, and a
core tensor sparsity-regularized Tucker decomposition model
was proposed. For the LLRT method, it was suggested that the
correlation of the nonlocal grouped tensor in the spatial and
spectral dimensions was not strong enough and only employed
the weighted nuclear norm minimization [10] to explore the
correlation property along with the nonlocal mode. Although

these two methods achieved good denoising results, the ITS
regularization is complex with too many regularizations, while
LLRT fails to explore the global spectral information of an
HSI. He et al. [34] illustrated that the denoising performance
can be improved by balancing the correlations between the
spectral and nonlocal self-similarities. Thus, there is still much
room to improve the performance of HSI denoising.

Nonlocal-based methods are focused on the correlation
representation of the grouped three-order tensor, namely local
spatial, global spectral, and nonlocal self-similarity correla-
tions. Utilization and balancing of the correlations between
the three modes is an important problem. The ITS method is
based on the Tucker decomposition and the CP decomposition.
Tucker decomposition represents a tensor using one core
tensor and a set of factor matrices, and it can capture the
correlation of three modes by minimizing the Tucker rank.
However, the number of parameters (variables) increases expo-
nentially following its dimensions. Assume that an n-order
tensor X ∈ R

I×···×I and the Tucker rank is [R, · · · , R];
then, the number of variables of the Tucker decomposition
is Rn + nI R. Moreover, CP decomposition usually achieves
satisfactory results with a much larger rank; thus, it cannot
better preserve the correlation of the nonlocal mode. Although
LLRT is a simple and efficient method, it only employs the
low-rank assumption in the nonlocal mode. Therefore, it pro-
vides motivation to search for another tensor representation
method for balancing the correlations among all the modes
to improve the performance of previous nonlocal-related
methods. Recently, a new tensor-ring (TR) decomposi-
tion was proposed to represent a high-order tensor as a
sequence of cyclically contracted third-order tensors [38], [39].
Compared with the Tucker decomposition, the number of
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variables of TR decomposition is Inr2 if the TR rank is
[r, · · · , r ] (in general, r < R). This is much smaller than
that of Tucker decomposition. Moreover, because TR factors
can be circularly shifted and treated equivalently, it is possible
to balance effectively the correlations of all the modes. Based
on the efficient representation of a high-order tensor, TR-based
methods obtained better results in tensor completion [40]–[43]
than those with the Tucker and CP decompositions.

Inspired by the effectiveness and superiority of TR repre-
sentation, a novel model for HSI denoising through nonlo-
cal TR (NLTR) decomposition was proposed in this article.
By introducing the TR decomposition to represent the nonlocal
grouped tensor, it was possible to capture and balance the
global spectral correlation and nonlocal self-similarity corre-
lation priors of the HSI more efficiently. The contributions of
this article include the following.

1) A new tensor representation TR decomposition was
introduced to depict the intrinsic spatial, spectral, and
nonlocal correlation of similarly grouped tensors simul-
taneously. The advantage of TR, compared with the
Tucker and CP decompositions, was determined by
analysis. The new model could be easily extended to
handle other high-dimension data-restoration problems.

2) An efficient optimization algorithm proximal alternating
minimization (PAM) was employed as the TR fac-
tor solver. Extensive experimental results on both the
simulated and real data sets demonstrate that the new
NLTR method outperforms the state-of-the-art nonlocal
methods for HSI denoising in terms of comparison of
visual and quantitative indices. The framework of the
proposed method is shown in Fig. 1.

The organization of this article is as follows. Section II
introduces notations and an HSI denoising framework. The
proposed NLTR decomposition and its optimization are for-
mulated in Section III. Section IV reports the simulated and
real experimental results and the parameter discussion. Finally,
the conclusions for this article are presented in Section V.

II. NOTATIONS AND PROBLEM FORMULATION

A. Notations

In this article, lowercase or uppercase letters (e.g., i, I ∈ R)
are used to denote scalars. Vectors are represented by boldface
lowercase letter, e.g., x ∈ R

I . Boldface capital letters (e.g.,
X ∈ R

I×J ) are employed to represent matrices. A tensor is a
multi-dimensional data array, and an n-order tensor (n ≥ 3)
is represented by a calligraphic letter X ∈ R

I1×I2×···×In .
An element value of X in position (i1, i2, · · · , in) is repre-
sented as X (i1, i2, · · · , in) or xi1i2 ···in . Two types of tensor
matricization (also called unfolding) expressions are defined
in this article. The normal mode-k matricization of a tensor
X ∈ R

I1×I2×···×In is introduced in [44] and represented as
X(k) ∈ R

Ik×I1 ···Ik−1 Ik+1 ···In . The other mode-k matricization
of X , which is introduced in [38] for TR decomposition,
is represented as X[k] ∈ R

Ik×Ik+1 ···In I1 ···Ik−1 . In contrast,
the unfolding matrices X(k) along the k-mode can be folded as
a tensor by X = foldk(X(k)), and the same definition is used
for the inverse operation of the second mode-k matricization

X[k]. Moreover, the Frobenius norm of a tensor X is calculated
as �X�F = (

�
i1,i2,...,in (xi1i2 ···in )2)(1/2).

B. HSI Denoising via Tensor Decomposition

The denoising problem is a strong ill-posed problem. Math-
ematically, HSI denoising can be generally formulated as a
regularization model

min
X

1

2
�Y − X�2F + λR(X ) (1)

where Y ∈ R
M×N×B is a noisy HSI with M × N spatial size

and B spectral bands, which is degraded by additive white
Gaussian noise; X ∈ R

M×N×B is a clean HSI to be restored;
and λ is a positive regularization parameter used to balance
these two terms. The first term is the data fidelity term, and
R(X ) is the regularization term that characterizes the prior
of X .

With model (1), to better and efficiently restore X from Y ,
the key problem is transformed to formulate an appropriate
regularization term for X . Because the HSI is a 3-D tensor
compared with the 2-D image, many tensor-based methods
perform HSI denoising by using the tensor decomposition
strategy for the HSI data. This includes using Tucker decom-
position [25] and CP decomposition [1] to approximate a
low-rank tensor. Tucker decomposition is used to find a core
tensor and a set of factor matrices, and to formulate them as

X = S ×1 U1 ×2 U2 ×3 U3 (2)

where S is the core tensor and Uk (k = 1, 2, 3) are the
factor matrices. In addition, CP decomposition is used to
decompose a tensor into the sum of rank-1 tensors and can
be formulated as

X = A ◦ B ◦ C =
R�

k=1

A(k) ◦ B(k) ◦ C(k) (3)

where A, B, and C are the factor matrices and ◦ is the vector
out product.

These methods make use of the correlation of different
bands in an HSI and can reduce its spatial–spectral redun-
dancy. However, when the tensor representation was directly
applied to the whole HSI data, it could not be used to explore
the nonlocal self-similarity prior [32]. Recently, several
researchers have confirmed that nonlocal methods can achieve
the state-of-the-art results for HSI denoising [31]–[33], [35].
Similar to the whole HSI denoising regularization model,
the nonlocal HSI noise removal model can be optimized by
using the following model:

min
Xi

1

2
�Yi − Xi�2F + λR(Xi ) (4)

where Xi ∈ R
P2×B×K is a third-order tensor stacked by

nonlocal similar patches in the i th exemplar patch. P denotes
the exemplar patch size and K denotes the number of nonlocal
similar patches. After all nonlocal groups Xi have recovered
from Yi , then Xi can be aggregated to reconstruct a clean
HSI X .
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Fig. 2. Illustration of TR decomposition.

Similar to the model (1), the key problem is the exploring of
the prior of Xi and designing the related regularization to the
optimized model (4). By grouping the similar patches together,
the global correlation is explored not only in the spectral mode
but also in the nonlocal mode. To explore these correlations,
TDL [31], ITS [32], [35], and unidirectional low-rank tensor
recovery [33] were proposed to describe the prior of Xi and
achieved the state-of-the-art results. TDL is based on low-rank
tensor Tucker decomposition and ITS encodes sparsity insights
delivered by low-rank tensor Tucker and CP decomposition.

III. PROPOSED NONLOCAL TENSOR-RING

DECOMPOSITION FOR HSI DENOISING

Although the mentioned nonlocal tensor HSI denoising
methods achieved satisfactory results, there is still room for
improvement of these results. Recently, a TR decomposi-
tion that represents a high-order tensor as a sequence of
cyclically contracted third-order tensors was proposed by
Zhao et al. [38]. Compared with Tucker and CP decomposi-
tions, TR decomposition can better approximate a high-order
tensor, because each tensor factor can be circularly shifted and
regarded equivalently under trace operation.

A. Tensor-Ring Decomposition

Compared with other forms of tensor decomposition,
the TR form is a more general and effective decomposi-
tion. The purpose of TR decomposition is to represent a
high-dimensional tensor by circular multilinear products on
a series of third-order factor tensors (also called TR factors)
[38]. Assume that Z is an n-dimension tensor with the size of
I1× I2×· · ·× In . The representation of the TR decomposition
of Z is to search n latent third-order core tensors G =
{G(1),G(2), · · · ,G(n)}, where G(k) ∈ R

rk×Ik×rk+1 . In this case,
each elementwise relation of Z with the core tensor G can be
expressed by

Z(i1, i2, · · · , in) = Tr(G(1)(i1)G(2)(i2) · · ·G(n)(in))

= Tr

�
n�

k=1

G(k)(ik)

�
(5)

where G(k)(ik) is the ik lateral slice matrix of G(k) and Tr(·)
denotes the matrix trace operation. According to the trace
operation, the product of these slice matrices should be a
square matrix; thus, TR decomposition sets the dimensions
of the first and last cores to r1 = rn+1. In this case, vector
r = [r1, r2, · · · , rn ] is called the TR-rank. The illustration of
TR decomposition is shown in Fig. 2.

Definition 1 (Tensor Multilinear Product [43]:) Let G(k) ∈
R

rk×Ik×rk+1 , k = 1, · · · , n are n third-order tensors in the TR

decomposition, and then, the multilinear product between G(k)

and G(k+1) is denoted as G(k,k+1) and calculated as

G(k,k+1)(( jk − 1)In + ik) = G(k)(ik)G(k+1)( jk) (6)

for ik = 1, · · · , Ik , jk = 1, · · · , Ik+1 and where G(k,k+1) ∈
R

rk×Ik Ik+1×rk+1 .
From Definition 1, it is possible to obtain the

multilinear product of all the TR core tensors
[G] = �n

k=1 G(k) = G(1,2,··· ,n) = {G(1),G(2), · · · ,G(n)} ∈
R

r1×I1 I2 ···In×r1 . Therefore, the TR decomposition can be
rewritten (5) as

Z = �([G]) (7)

where � represents the TR reshaping operator that transforms
the third-order tensor [G] to an n-order tensor Z , i.e., � :
R

r1×I1 I2 ···In×r1 → R
I1×I2×···×In , and the operator is defined by

Z(i1, i2, · · · , in) = Tr([G](:, i1 + (i2 − 1)I1

+ · · · + (in − 1)I1 I2 · · · In−1, :)). (8)

Lemma 1 (Circular Dimensional Permutation Invariance
[38]): For any n-order tensor Z ∈ R

I1×I2×···×In , if Z =
�({G(1),G(2), · · · ,G(n)}) is its TR decomposition,

←−Z k ∈
R

Ik×Ik+1 ···×In×I1×···×Ik−1 circularly shifts the dimensions of Z
by k. Then, the following relation can be obtained using:
←−Z k=�({G(k),G(k+1),. . .,G(n),G(1),. . .,G(k−1)}). (9)

With Lemma 1, any TR core tensor can easily be shifted
to the first position, indicating that TR decomposition has the
ability to capture the correlation of an element in multiple
dimensions.

B. Nonlocal Tensor-Ring Decomposition Model

From the definition and properties of TR decomposition,
it is clear that it has numerous advantages over other tensor
decomposition formats. First, the number of variables in
storage is much smaller than that of Tucker decomposition.
The number of variables in Tucker decomposition increases
exponentially with respect to its original tensor order, indi-
cating that the number of variables to be estimated for TR
is obviously decreased. Thus, the estimates with TR will
normally be more precise than for Tucker decomposition.
Second, TR has the characteristics that each tensor factor can
be circularly shifted and regarded equivalently under trace
operation, whereas other tensor decomposition techniques fail
to preserve this superiority. Third, the decomposition format
of TR is tensor to tensor; thus, it has better ability to preserve
the original data structure than Tucker or CP decomposition.

Furthermore, we focus on the 2-D spectral matrix analysis
and illustrate the advantage of TR decomposition for HSI
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processing. We extract the spectral signatures of two different
materials (denote S1 ∈ RB×k and S2 ∈ RB×k) from the HSI
data set, where B is the number of band and k is the pixel
number of the related materials. Then, we analyze the TR
decomposition of the 2-D matrix S = [S1, S2] ∈ RB×2k .
Typically, we adopt A1 ∈ RB×r1 and A2 ∈ RB×r1 to represent
the basis of S1 and S2, respectively, i.e., S1 = A1 B1 and
S2 = A2 B2. However, matrix/tensor decomposition can learn
a global optimal basis of S, ignoring the characteristics of
each material. The TR decomposition of S is represented as
S = �{G(1),G(2)}, where G(1) ∈ R2×B×r1 is the basis tensor.
The core tensor G(1) has the ability to learn the basis of each
material separately. That is to say, TR ring decomposition can
precisely obtain the basis of each materials, since TR decom-
position can learn several bundles of signatures associated
with each basis and robustly estimate basis coefficient. This is
similar to the HSI unmixing with spectral variability [45]
that relies on the definition of a set of multiple spectral
signatures, referred to as endmember bundles, to characterize
each endmember class. From the above analysis, we can find
that TR decomposition has stronger ability than matrix/tensor
decomposition to learn the basis of HSI’s different materials.

Based on the superiority of TR decomposition, HSI denois-
ing can be achieved by finding the TR representation of the
whole HSI. However, directly using TR decomposition for
the whole HSI does not capture the nonlocal self-similarity;
thus, TR decomposition was introduced for nonlocal HSI
denoising. That is, the regularization term R(Xi ) can be
formulated in model (4) as �Xi − �([Gi ])�2F . By selecting
an appropriate parameter, the proposed NLTR decomposition
denoising model can be formulated as

min
Xi ,Gi

1

2
�Yi − Xi�2F s.t. Xi = �([Gi ]). (10)

The proposed NLTR method mainly consists of three steps:
grouping nonlocal similar fullband patches, low-rank TR
approximation, and aggregating the estimated patches to a
clean HSI. First, for each exemplar patch Xi , all similar
patches are searched in a local window by the Euclidean
distance-based similarity metric. Second, the low-rank tensor
approximation is performed by estimating the TR core tensors
Gi . Finally, the denoised HSI is recovered by aggregating all
the patches. The three steps of the new method are presented
in Fig. 1.

C. Optimization Method and Convergence Analysis

The optimization of the NLTR model can be divided into
two steps. First, the TR cores Gi = {G(1)

i ,G(2)
i ,G(3)

i } are
estimated by solving the following optimization problem:

min
Gi

1

2
�Yi −�([Gi ])�2F . (11)

Once the TR cores Gi are obtained, Xi is computed as
Xi = �([Gi ]). The key problem is how to optimize the
model (11). Clearly, the problem of (11) is not jointly convex
for Gi , but it is convex for Gi = {G(1)

i ,G(2)
i ,G(3)

i } indepen-
dently. To optimize the nonconvex problem effectively, PAM is
applied [46]–[49].

Before optimizing (11), the problem of (11) is transformed
into its equivalent form by introducing the proximal opera-
tor [50], and the problem can be rewritten as

min
Gi

1

2
�Yi −�([Gi ])�2F +

ρ

2
�Gi − (Gi )

j�2F (12)

where ρ denotes a positive proximal parameter and (Gi )
j is

the result of the last iteration of Gi . Then, it becomes possible
to update alternately each core G(k)

i (k = 1, 2, 3) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�G(1)
i


 j+1 = min
G(1)

i

1
2�Yi −�

�{G(1)
i ,
�G(2)

i


 j
,
�G(3)

i


 j }
�2F
+ρ

2 �G(1)
i −

�G(1)
i


 j�2F�G(2)
i


 j+1=min
G(2)

i

1
2�Yi −�

�{�G(1)
i


 j+1
,G(2)

i ,
�G(3)

i


 j }
�2F
+ρ

2 �G(2)
i −

�G(2)
i


 j�2F�G(3)
i


 j+1=min
G(3)

i

1
2�Yi−�

�{�G(1)
i


 j+1
,
�G(2)

i


 j+1
,G(3)

i }

�2F

+ρ
2 �G(3)

i −
�G(3)

i


 j�2F .

(13)

According to Lemma 1, each core tensor is shifted to the first
position when optimizing this core tensor, which gives

Z<k> = (
←−
Z k)(1) = G(k)

(2)

�
G(k+1,··· ,1,...,k−1)

<2>


T
. (14)

Based on (14), the least square problem (13) can be solved as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�G(1)
i


 j+1 = fold2
��

Yi,<1>

�
G(2,3)

i,<2>


 j + ρ
�
G(1)

i,(2)


 j 

× ��G(2,3)

i,<2>


 j,T �G(2,3)
i,<2>


 j + ρI

−1
�G(2)

i


 j+1 = fold2
��

Yi,<2>

�
G(3,1)

i,<2>


 j + ρ
�
G(2)

i,(2)


 j

× ��G(3,1)

i,<2>


 j,T �G(3,1)
i,<2>


 j + ρI

−1
�G(3)

i


 j+1 = fold2
��

Yi,<3>

�
G(1,2)

i,<2>


 j + ρ
�
G(3)

i,(2)


 j 

× ��G(1,2)

i,<2>


 j,T �G(1,2)
i,<2>


 j + ρI

−1


(15)

where I is the identity matrix. After the optimization of core
tensors Gi , Xi can be updated as follows:

Xi = �([Gi ]). (16)

The whole HSI denoising procedure is summarized in
Algorithm 1.

According to the solver framework in [46], the proposed
algorithm can converge to a critical point of the objection
function. The theoretical proof of convergence is described in
the Appendix.

D. Computational Complexity

Considering Algorithm 1 for an input-noisy HSI Y ∈
R

M×N×B , the total number of exemplar groups is S =
O(M N). The main computation complexity of each exemplar
group is to update Gi in Step 8. Assuming that the size
of each group is Yi ∈ R

I×I×I and the TR rank is set as
r1 = r2 = r3 = r , the cost of each exemplar group updating
in each iteration is O(r6 + I 2r4 + I 3r2). For quite large
spatial size, the computation cost is extremely high. However,
the denoising can be performed on the S groups using parallel
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Fig. 3. Five simulated HSIs selected from the CAVE data set. The color image is composed of bands 31, 22, and 1. (a) Balloons. (b) Toy. (c) Cloth.
(d) Feather. (e) Food.

Algorithm 1 NLTR Method for HSI Denoising

Require: Degraded HSI Y , TR rank r = [r1, r2, r3]T , para-
meters ρ and δ.

1: Initialize: Let X (0) = Y , Y(0) = Y .
2: for t = 1 : T do
3: Calculate Y(t) = Y(t−1) + δ(Y − X (t−1)).
4: for each exemplar patch Yi do
5: Grouping non-local similar patches to form tensor Yi .
6: Randomly initialize for core tensors Gi .
7: while not converged do
8: Alternately update Gi = {G(1)

i ,G(2)
i ,G(3)

i } via (15).
9: end while

10: Compute Xi = �([Gi ]).
11: end for
12: Aggregate all Xi to achieve the denoised HSI X (t).
13: end for
Ensure: Denoised HSI result X (T ).

computing. Moreover, the group processing of each exemplar
patch is then searched on a 2-D matrix that is obtained by
averaging each band of Y [33]. Therefore, the computational
cost can be significantly reduced.

IV. EXPERIMENTAL RESULTS

In the experimental tests, simulated and real experiments
were performed to illustrate the effectiveness of the NLTR
method for HSI denoising. The following nine state-of-the-
art and representative denoising methods were employed for
comparison: bandwise BM3D [51],1 LRMR [52], BM4D [37],
LRTA [25], PARAFAC [1], LRTDTV [28], TDL [31],2 KBR
(an extension of ITS) [35], and LLRT [33].3 The codes of the
comparison methods are available from the authors’ home-
pages. Moreover, all parameter selections for the comparison
approaches were determined from the authors’ codes or from
the suggestion in their articles to obtain the best performance.
To help reproduce all of the experimental results for HSI
denoising, the NLTR code will be published on one of the
author’s homepage.4 The patch size P = 6, the number of

1http://www.cs.tut.fi/∼foi/GCF-BM3D/
2http://gr.xjtu.edu.cn/web/dymeng/2
3http://www.escience.cn/people/changyi/index.html
4http://www.escience.cn/people/yongchen/index.html

similar patchs K = 200, and proximal parameter ρ = 1
were used in all the experiments. The detailed discussions of
parameter selection for NLTR are presented in Section IV-D.

A. Simulated Experiments

In the simulated experiments, three popular data sets were
selected to simulate a noisy HSI. The first was the Columbia
MSI data set, (CAVE5) which includes 32 real-world objects
and materials. Each data set contained spatial size 512× 512
and spectral dimension 31. In the test, five MSIs were selected
from which to extract subimages with a size of 200 × 200 ×
31 to perform the experiments shown in Fig. 3. The second
and third HSIs were selected from the hyperspectral Pavia City
Center data set (PaC6) and the Washington DC Mall data set,
(WDC7) respectively. Two subimages with size 200 × 200×
50 were extracted from these two hyperspectral data sets as
the clean image. To simulate different noisy levels, zero-mean
additive Gaussian noise was simulated with noise variance σ
of 10, 30, 50, or 100 for all the clean data sets.

To evaluate the denoising results of all methods, five
objective quantitative indices were computed for comparison,
including the peak signal-to-noise ratio (PSNR), the struc-
ture similarity (SSIM) [53], the feature similarity (FSIM)
[54], the erreur relative globale adimensionnelle de synthese
(ERGAS) [55], and the spectral angle mapper (SAM). PSNR
and SSIM are two common indices for image restoration.
FSIM illustrates the perceptual consistency compared with the
ground truth. ERGAS and SAM are based on the spectral
evaluation index. In general, larger PSNR, SSIM, and FSIM
indicate better denoising results. In contrast, better results
are needed to obtain smaller ERGAS and SAM. The image
denoising results are shown for visual comparison.

1) Experimental Results for CAVE Data Set: Figs. 4 and 5
show the visual results for the CAVE Toy and Feather MSIs
at two different noise intensities, respectively. LRMR failed
to remove the noise in both the cases, because it used
matrix low-rank to perform the denoising processing. With the
noise variance σ = 50, other methods were able to remove
the noise, but LRTA, PARAFAC, and LRTDTV produced

5http://www1.cs.columbia.edu/CAVE/databases/multispectral/
6http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_

Scenes
7https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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Fig. 4. Denoised results of CAVE-Toy image of the noise variance σ = 50. (a) Original. (b) Noisy. (c) BM3D. (d) LRMR. (e) BM4D. (f) LRTA. (g) PARAFAC.
(h) LRTDTV. (i) TDL. (j) KBR. (k) LLRT. (l) NLTR.

Fig. 5. Denoised results of the CAVE-Feather image on the noise variance σ = 100. (a) Original. (b) Noisy. (c) BM3D. (d) LRMR. (e) BM4D. (f) LRTA.
(g) PARAFAC. (h) LRTDTV. (i) TDL. (j) KBR. (k) LLRT. (l) NLTR.

some artifacts. Moreover, BM3D and BM4D destroyed the
image details. These visual conditions can be observed in
the enlarged box. Fig. 5 shows the results of high noise
variance. BM3D, LRMR, BM4D, LRTA, PARAFAC, and
LRTDTV could not completely remove the noise completely,
and the image textures were not preserved. The nonlocal-based
methods TDL, KBP, and LLRT effectively eliminated noise,
but image detail was lost. From the enlarged box, the new
nonlocal-based TR decomposition method NLTR was found to
achieve the best visual denoising results, thereby removing the
noise effectively and preserving most of the image details and
textures.

Table I presents the quantitative results from comparison
of the denoising approaches with the CAVE data set at four
different noise levels, calculated by averaging five MSI scenes
for each noise level. We highlight the top three algorithms by
using three different colors (red, green, and blue). Among the
three colors, the best performance for each quality index is
highlighted in red, the second-best performance is highlighted

in green, and the third-best performance is highlighted in
blue. From Table I, nonlocal-based tensor decomposition
methods show better results than the other methods. More-
over, the NLTR approach achieves better improvement of
the denoising results than the state-of-the-art nonlocal-based
tensor methods TDL, KBP, and LLRT, which indicates the
superiority of TR decomposition for tensor representation.
Fig. 6 shows the PSNR values of each band on the CAVE
data set at four different noise levels, which are also computed
by averaging the five MSIs. The results again demonstrate
that nonlocal-based methods obtained superior results, and that
the NLTR approach achieved the best results in most of the
bands.

B. Experimental Results for the PaC and WDC Data Sets

Figs. 7 and 8 show the denoising results for the PaC
and WDC data sets, respectively. BM3D removed the
noise band by band, but the image details were destroyed.
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TABLE I

QUANTITATIVE RESULTS OF DIFFERENT COMPARISON METHODS ON THE CAVE DATA SET UNDER DIFFERENT NOISE VARIANCES

Fig. 6. PSNR values of each band of the CAVE data set at different noise levels. (a) σ = 10. (b) σ = 30. (c) σ = 50. (d) σ = 100.

The noise was eliminated by BM4D and KBR, but they
obtained blurry results. Although LRTA, PARAFAC, LRT-
DTV, and TDL obtained acceptable results at low noise levels,
they could not remove noise at high noise levels. In compari-
son, LLRT and the proposed NLTR method achieved superior
results competitive with the other methods.

Tables II and III show the comparison of quantitative results
for the PaC and WDC data sets, respectively. From Tables II
and III, the NLTR method shows a slight improvement over the
comparison methods at low noise levels. However, when the
HSIs are seriously degraded by high noise levels, the proposed
method demonstrates significant improvement in these four
quantitative indices. Moreover, it can again be confirmed that
the nonlocal-based methods outperformed the other methods,
because they could explore more correlation information in
the image. Fig. 9 shows the PSNR value of each band
for the PaC and WDC data sets. It is evident that NLTR
achieves much higher PSNR for almost every band except
σ = 30 in the WDC data set, which indicates the robustness
of the proposed method. In summary, extensive simulation
experiments demonstrated that the NLTR method outperforms
existing denoising approaches.

C. Real Experiments

In the above, a series of simulated experiments was per-
formed to illustrate the effectiveness of the NLTR method;
however, in real scenes, noise degradation is very complex.
To demonstrate the effectiveness of the NLTR method in
handling actual noisy HSIs, two remarkable noisy data sets
were selected for testing. The first data set was collected
by the NASA AVIRIS instrument over the Indian Pines test
site,8 and the original size was 145 × 145 × 220. Some
bands of this data set are seriously degraded with complicated
noise. The second data set was collected by the reflective
optics system imaging spectrometer (ROSIS) of the Pavia
University,9 and the data contained 610 × 340 spatial pixels
with 103 spectral bands. Because the first few bands are
seriously degraded by noise, several bands with spatial size
340 × 340 were extracted to test.

Figs. 10 and 11 show the denoised results on the Indian
Pines and Pavia University data sets, respectively. As presented

8https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
9http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_

Scenes
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Fig. 7. Denoised results of WDC image of the noise variance σ = 50. (a) Original. (b) Noisy. (c) BM3D. (d) LRMR. (e) BM4D. (f) LRTA. (g) PARAFAC.
(h) LRTDTV. (i) TDL. (j) KBR. (k) LLRT. (l) NLTR.

TABLE II

COMPARISON OF QUANTITATIVE RESULTS OF DIFFERENT METHODS USED ON THE PAC DATA SET UNDER DIFFERENT NOISE VARIANCES

in the denoised results of Fig. 10, it can be seen that the
BM3D method blurred the image to remove the noise. With
LRMR, LRTA, and TDL, the results included persistent noise
in the images. PARAFAC and LRTDTV removed the noise but
introduced some artifacts. Compared with the other methods,
KBR and LLTR obtained better results, but some details
were not well preserved. In contrast, NLTR simultaneously
removed the noise and preserved the image details. The
Pavia University data set was degraded by lower noise levels
than with the Indian Pines data set, but BM3D, BM4D,
LRTA, and TDL could not completely remove the noise.
TDL achieved satisfactory denoising results in the simulation
experiments, but failed to achieve such results using real data.
LRMR effectively removed the noise using noise-free band

information, but the image contrast was changed. Although
LRTDTV and LLRT obtained better results than the above,
the image details were blurred (see the enlarged box). After
denoising, KBR and NLTR provided the best denoising results
compared with all other methods. In summary, even without
the ground-truth HSI as a reference, visual comparison also
demonstrated the superiority of the proposed NLTR method
for denoising real data. Moreover, we employed one non-
reference image-assessment index Q-metric [56] to evaluate
the results of real data sets. Table IV lists the nonreference
index values of the real data sets. Combining the visual
comparison and the nonreference image-assessment index,
we can observe that the proposed method obtains the best
results.
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TABLE III

COMPARISON OF QUANTITATIVE RESULTS OF DIFFERENT METHODS USED ON THE WDC DATA SET UNDER DIFFERENT NOISE VARIANCES

Fig. 8. Denoised results of a PaC image of the noise variance σ = 100. (a) Original. (b) Noisy. (c) BM3D. (d) LRMR. (e) BM4D. (f) LRTA. (g) PARAFAC.
(h) LRTDTV. (i) TDL. (j) KBR. (k) LLRT. (l) NLTR.

TABLE IV

BLIND ASSESSMENT INDEX Q-METRIC COMPARISON ON THE REAL DATA

D. Discussion
In the NLTR model, there are several parameters that need

to be determined before performing Algorithm 1, including
patch size P , similar patch numbers K , proximal parameter
ρ, iterative regularization parameter δ, and TR rank r =
[r1, r2, r3]. For fair comparison, the iterative regularization
parameter was set to δ = 0.1 as introduced in [32] and [35] for
all the experiments. Although there are many other parameters

in the model, all are very robust and could be fixed in all
experiments. Next, the sensibility of these parameters will be
analyzed. A subimage of Toy from the CAVE data set and
the PaC data set was selected as the experimental object, and
PSNR was employed as the evaluation measure to analyze the
influence of the parameters.

1) Analysis of Patch Size P: Fig. 12(a) shows the
PSNR values with different patch sizes and noise levels.
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Fig. 9. PSNR values of each band in the PaC and WDC data sets at different noise levels. Top: PaC data set, Bottom: WDC data set. (a) σ = 10. (b) σ = 30.
(c) σ = 50. (d) σ = 100.

Fig. 10. Denoised results for the Indian Pines sets of real data. (a) Noisy. (b) BM3D. (c) LRMR. (d) BM4D. (e) LRTA. (f) PARAFAC. (g) LRTDTV.
(h) TDL. (i) KBR. (j) LLRT. (k) NLTR.

With different noise levels, the change in the PSNR values
is not very rapid except for the cases when noise variances
are equal to 30 and 50 in the PaC data set, which indicates
the relative robustness of the parameter P . To balance the
performance and efficiency, the patch size was set to P = 6
in all the experiments. Moreover, the overlapped pixel was
set to 1.

2) Analysis of the Number of Similar Patches K : The
relationship of PSNR with similar patch numbers K is shown
in Fig. 12(b). From the results, with the increase in the patch
number, the PSNR values are significantly improved. When
the patch number reaches 200, the PSNR results remain stable;
thus, the patch number was empirically set to K = 200 in all
the experiments.

3) Analysis of the Proximal Parameter ρ: In the NLTR
solver, a proximal term was employed to guarantee algorithm
stability. Fig. 12(c) shows the PSNR curves with respect to

different values of ρ at four noise levels. From Fig. 12(c),
it can be observed that the PSNR achieves obvious improve-
ment with the increase in ρ. However, when ρ continued to
increase, the performance worsened, and the best results were
achieved with ρ = 1. Based on these results, the empirical
setting ρ = 1 was used in all the experiments.

4) Analysis of TR Rank: The TR rank is an important para-
meter in the proposed model, and it controls the correlation
of the nonlocal grouped tensor. To simplify the selection of
the TR rank, it was assumed that the TR ranks of the second
and third dimensions were equal, i.e., that TR rank was set
as r = [r1, r2, r2]. Fig. 13 shows the changes in the PSNR
values with different TR ranks at four noise levels. From
Fig. 13, it can be observed that the PSNR increases with
increasing TR rank at a low noise level σ = 10. In contrast,
r2 should be smaller when the noise level is higher. The reason
is that smaller TR rank can suppress noise when the noise
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Fig. 11. Denoised results for the Pavia University sets of real data. (a) Noisy. (b) BM3D. (c) LRMR. (d) BM4D. (e) LRTA. (f) PARAFAC. (g) LRTDTV.
(h) TDL. (i) KBR. (j) LLRT. (k) NLTR.

Fig. 12. Relationship of parameters with PSNR values at different noise levels. (a) Patch size P . (b) Number of similar patches K . (c) Proximal parameter ρ.
Top: Toy data set. Bottom: PaC data set.

level is high. To balance the robustness of the TR rank and
efficiency of the denoising results, the TR rank was empirically
set to r = [12, 8, 8] at a low noise level (σ = 10). For
σ = {30, 50, 100}, the TR rank was set to r = [9, 3, 3].
In the real data, because the Indian Pines data set was seriously
degraded by noise, the TR rank was set low r = [9, 3, 3].
For the Pavia University data set, the TR rank was set to
r = [12, 8, 8]. In summary, the related parameters in the
proposed model were relatively robust, because they could
be fixed in all experiments and, thereby, obtained a better
denoising result.

In our experimental results, we compared our NLTR method
with many nonlocal modeling-based methods to show the
superiority of TR decomposition for HSI denoising. In the
next, to show the contribution of nonlocal modeling in
NLTR, we compared the results of NLTR with the method
that directly applies TR decomposition (without the nonlocal
strategy) to the whole image. Table V lists the quantitative
comparison results of NLTR with TR on the PaC data set.
It can be observed that the nonlocal strategy significant
improves the denoised performance, especially for high noise
variance.
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Fig. 13. Relationship of TR rank with PSNR values at different noise levels. Top: Toy data set. Bottom: PaC data set. (a) σ = 10. (b) σ = 30. (c) σ = 50.
(d) σ = 100.

TABLE V

COMPARISON OF QUANTITATIVE RESULTS OF NLTR WITH TR USED ON

THE PAC DATA SET UNDER DIFFERENT NOISE VARIANCES

V. CONCLUSION

In this article, a new NLTR decomposition was proposed
for HSI denoising. The TR representation was used to explore
simultaneously the nonlocal self-similarity and spectral cor-
relation in the HSI. To optimize the TR factor efficiently,
the PAM algorithm was designed to optimize the model.
Extensive comparative experimental testing of both simulated
and real data sets, using a group of state-of-the-art HSI
denoising methods, demonstrated the superiority of NLTR
decomposition for HSI denoising. It is expected that this TR
denoising framework will be extended in the future research
for other image processing tasks.

Although the proposed model can achieve good denoising
performance, there is still room for improvement. For example,
automatic TR rank parameter estimation should be considered
in the future, which is expected to improve the application
and denoising results. In addition, the combination of a TR
network with deep learning ideas [57], [58] offers a promising
approach for HSI denoising.

APPENDIX

In the following, a convergence analysis of the algorithm is
given briefly. First, the convergence condition of the algorithm
is reviewed.

Lemma 2 ( [46]): Let function f : R
n → R ∪ +∞ be a

proper lower semicontinuous function, and let (x j ) j∈N ∈ R
n

be a sequence such that:
C1 (Sufficient decrease condition): For each j ∈ N,

f (x j+1) + c1�x j+1 − x j�22 ≤ f (x j ) holds for a constant
c1 ∈ (0,+∞);

C2 (Relative error condition): For each j ∈ N, ∃ g j+1 ∈
∂ f (x j+1) such that �g j+1�2 ≤ c2�x j+1 − x j�22 holds for a
constant c2 ∈ (0,+∞);

C3 (Continuity condition): There exists a subsequence
{x jk } j∈N and x̄ ∈ R

n such that x jk → x̄ and f (x jk )→ f (x̄),
as k →+∞.

If the function f has the Kurdyka–Lojasiewicz (KL) prop-
erty [46] at x̄ specified in C3, then the sequence (x j ) j∈N
converges to x j → x̄ ; x̄ is a critical point of function f ; and
the sequence (x j ) j∈N has a finite length, i.e.,

�+∞
k=0 �x j+1 −

x j� < +∞.
Theorem 1: Assume that the sequence (Gi )

j generated by
the proposed algorithm is bounded, then it converges to a
critical point of the objection function.

Proof: Let f (Gi ) = (1/2)�Yi−�([Gi ])�2F ; from this, it is
easy to know that f is a C1 function with Lipschitz continuous
gradient. Moreover, f is a polynomial of Gi because of the
definition of the Frobenius norm. Based on the condition that
the polynomial operator is a semialgebraic function, f is
semialgebraic.

According to the literature [59], a semialgebraic real-valued
function f is a KL function, thereby f satisfying the KL
property at ∀ x ∈ dom( f ). In addition, the proximal operator
is introduced in the solver, which is the framework of the
alternating minimizing procedure [see 46, eqs. (61)–(63)])
with Bi = ρ I, ρ > 0. Thus, the iterative sequence G j

i obtained
by the PAM algorithm satisfies the conditions C1, C2, and
C3 in Lemma 2. That is, the bounded sequences generated by
the proposed algorithm converge to a critical point of f . �
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