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Hyperspectral Image Compressive Sensing
Reconstruction Using Subspace-Based
Nonlocal Tensor Ring Decomposition
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Abstract— Hyperspectral image compressive sensing recon-
struction (HSI-CSR) can largely reduce the high expense and low
efficiency of transmitting HSI to ground stations by storing a few
compressive measurements, but how to precisely reconstruct the
HSI from a few compressive measurements is a challenging issue.
It has been proven that considering the global spectral correla-
tion, spatial structure, and nonlocal self-similarity priors of HSI
can achieve satisfactory reconstruction performances. However,
most of the existing methods cannot simultaneously capture the
mentioned priors and directly design the regularization term
to the HSI. In this article, we propose a novel subspace-based
nonlocal tensor ring decomposition method (SNLTR) for
HSI-CSR. Instead of designing the regularization of the low-rank
approximation to the HSI, we assume that the HSI lies in
a low-dimensional subspace. Moreover, to explore the nonlo-
cal self-similarity and preserve the spatial structure of HSI,
we introduce a nonlocal tensor ring decomposition strategy
to constrain the related coefficient image, which can decrease
the computational cost compared to the methods that directly
employ the nonlocal regularization to HSI. Finally, a well-known
alternating minimization method is designed to efficiently solve
the proposed SNLTR. Extensive experimental results demonstrate
that our SNLTR method can significantly outperform existing
approaches for HSI-CSR.

Index Terms— Compressive sensing, hyperspectral image,
subspace, nonlocal self-similarity, tensor ring decomposition.

I. INTRODUCTION

IN THE past few years, compressive sensing (CS) [1]
theory has been developed as an efficient mechanism for

hyperspectral imagery (HSI) compression [2]. The CS the-
ory assumes that a suitably sparse signal can be accurately
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reconstructed by a small number of incoherent measurements.
It has been indicated that if HSI possesses the sparsity
characteristic in an approximate dictionary, then the HSI-CSR
is theoretically possible [3]. The HSI-CSR vastly saves the cost
and storage space in the imaging and transmissive process.
However, it is a difficult problem to reconstruct the image
from a small number of measurements since the CS problem
is an ill-posed issue. Regularization methods are generally
employed to solve this problem by introducing the prior
information of the desired object. Therefore, traditional sparse
regularization methods can be employed for HSI-CSR, such as
�0, �1, and �p (0 < p < 1) sparse terms on a given dictionary
(e.g., endmember dictionary [4] or wavelets [5]). Following
the line of sparse representation methods, Zhang et al. [6]
proposed a weighted Laplace prior to describe the distribution
of structured sparsity for HSI-CSR. Subsequently, to promote
structured sparsity, Zhang et al. [3] again developed a sparse
representation of HSI in a data-adaptive dictionary frame-
work. In addition, there are other sparsity-based approaches
for solving the HSI-CSR problem, including spatial-spectral
redundancy structure [7], joint group sparse PCA [8], and
total variation (TV) regularization [9], [10]. However, these
methods fail to fully capture the prior knowledge of HSI,
resulting in suboptimal reconstruction results. In particular,
it is difficult to reconstruct the details in the case of relatively
low sampling ratios [11].

Recently, motivated by HSI denoising methods, spectral
correlation, spatial smoothness, and nonlocal self-similarity
priors have been widely considered for the task of HSI-CSR.
As the HSI is a 3D tensor data, tensor-based models have
attracted much attention for capturing the above priors.
Karami et al. [2] applied tensor Tucker decomposition to
constrain the discrete wavelet transform coefficients of spectral
bands of HSI, which can simultaneously depict the spa-
tial and spectral information in the image. Following the
line of Tucker decomposition, there are many other Tucker
decomposition-based methods for HSI-CSR [11]–[15]. In [12],
the authors added sparse regularization to the core ten-
sor, which can better depict the spatial-spectral correlation
of HSI. To capture the nonlocal self-similarity of the image,
Du et al. [15] employed Tucker decomposition for the
process of grouping similar tensor patches to improve the
spatial-spectral correlation in HSI and achieved a better
HSI-CSR result. As HSI has a smooth local structure in
the spatial and spectral dimensions, weighted 3D TV reg-
ularization was incorporated into the Tucker decomposition
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framework for HSI-CSR [11]. Moreover, the combination of
nonlocal low-rank regularization and hyper-Laplacian regu-
larization was proposed by using the spectral consistency
and nonlocal self-similarity in the spatial dimension [16],
respectively.

Although these previous works can obtain satisfactory
HSI-CSR results, they are subject to specific issues. The HSI
has a strong correlation in the spectral dimension [17]–[19],
which is depicted by the low-rank prior. However, previous
HSI-CSR methods captured the low-rank prior in the original
image space by using convex or nonconvex norms and ten-
sor decomposition, which leads to high computational costs
because of a large number of bands. Based on previous HSI
processing works [20], [21], this problem can be approached
by projecting the original HSI into a low-dimensional sub-
space, and the prior HSI can be explored by regularizing the
basis coefficient, which largely decreases the computational
cost and enhances the spectral correlation. Moreover, previous
works cannot simultaneously capture the spectral correlation,
spatial smoothness, and nonlocal self-similarity characteristics.
For example, in [11], the authors used Tucker decomposition
and 3D TV to explore the first two priors while ignoring
the important nonlocal self-similarity prior. Xue et al. [16]
employed the nonlocal low-rank regularization to investigate
the nonlocal self-similarity prior. However, it cannot effec-
tively consider the spectral correlation in HSI and creates
a considerable computational burden by directly applying
the nonlocal prior to HSI itself. Furthermore, tensor-based
methods mainly employ Tucker decomposition to constrain the
image [11], [15] for HSI-CSR, which cannot achieve the best
approximation for a low-rank tensor [22]–[24]. Thus, previous
methods can only obtain suboptimal HSI-CSR results, and
the performance of HSI-CSR can be further improved by
considering these deficiencies.

To address the aforementioned issues, this article pro-
poses a subspace-based nonlocal tensor ring decomposition
method (SNLTR) for HSI-CSR, which integrates both the
global spectral low-rank and spatial nonlocal self-similarity
characteristics of HSI. In our work, the global spectral corre-
lation property of HSI is depicted by subspace representation
rather than low-rank approximation regularization, which was
effectively introduced in HSI processing, such as dimension
reduction and restoration [20], [21], [25]. Under this subspace
representation method, the spatial structure depiction of the
original HSI can be transformed to explore the representa-
tion coefficient images. To better preserve the spatial struc-
ture for HSI-CSR, we introduce the state-of-the-art nonlocal
self-similarity prior to regularizeing the coefficient images.
Moreover, motivated by the performance and effectiveness of
the tensor ring (TR) representation [26] compared to other
tensor decompositions, the novel TR decomposition strategy
is employed to describe the low-rank property of the nonlo-
cal grouped tensor. The contributions of this article can be
summarized as follows.

1) We propose a unified subspace-based representation
model to simultaneously depict the global spectral correlation
and spatial nonlocal self-similarity characteristics of HSI,
and the reconstruction of HSI is transformed to estimate

the basis subspace and representation coefficients of HSI.
In particular, the global spectral correlation is captured by
subspace low-rank factorization, and novel TR decomposition
is employed to exploit the nonlocal self-similarity property by
regularizing the representation coefficient image.

2) We analyze the superiority of TR decomposition over tra-
ditional Tucker decomposition for HSI processing and conduct
a series of experimental results to demonstrate it.

3) We design an alternating minimization algorithm to solve
our SNLTR model. Experimental results on different HSI
datasets under five sampling ratios demonstrate the superiority
of our SNLTR compared to exiting state-of-the-art HSI-CSR
methods in terms of quantitative and visual comparisons.

The rest of this article organized is as follows. Section II
describes some notations and HSI-CSR framework. The pro-
posed SNLTR method and the corresponding optimization
process are introduced in Section III. Section IV illustrates the
experimental results and model analysis. Finally, we conclude
this article in Section V.

II. RELATED WORK

A. Notations

In this study, scalars and vectors are represented as lower-
case letters (e.g., i, I ∈ R) and boldface lowercase letters (e.g.,
x ∈ R

I ), respectively. Boldface capital letters (e.g., X ∈ R
I×J )

and calligraphic letters (e.g., X ∈ R
I1×I2×···×In ) are used

to denote matrices and tensors, respectively. X (i1, i2, · · · , in)
or xi1i2 ···in denotes the element value of X in location
(i1, i2, · · · , in). Moreover, We define two types of tensor
unfolding (also named matricization) expressions in this paper.
The first mode-k unfolding of tensor X ∈ R

I1×I2×···×In is
defined in [27] and denoted as X(k) ∈ R

Ik×I1 ···Ik−1 Ik+1 ···In .
The second mode-k unfolding of X , which is defined in [26],
is denoted as X<k> ∈ R

Ik×Ik+1 ···In I1···Ik−1 . Additionally,
the unfolding matrices X(k) can be folded as a tensor along
the k-mode by X = foldk(X(k)), and a similar representation
is employed to the folded process of the second mode-k
unfolding matrices. The tensor Frobenius norm is represented

as �X�F =
(∑

i1,i2,··· ,in (xi1i2 ···in )2
) 1

2 .

B. Problem Formulation

Recently, there have been many different compressive sens-
ing models in HSI, including optical-based compressive HSI
for imaging [28]–[32], and random measurement compressive
HSI for storage and transmission [11], [33]. In our work,
we mainly focus on the random measurement HSI-CSR. The
reason is that before the subsequent application of HSI in
remote sensing society, the images captured by a satellite
or an airborne sensor should be sent to a ground station on
earth. Since the size of the spectral and spatial dimensions
are relatively large, the storage space of the data is very high,
which produces various problems of high expense and low
efficiency in transmitting them to the ground stations [11].
Based on this deficiency, it is crucial to find high-efficiency
strategies for HSI compression.

The problem of random measurement HSI-CSR is to recon-
struct the desired HSI from a small number of compressive
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measurements. Given a clean HSI X ∈ R
M×N×B , where B is

the number of spectral bands, and M and N are the spa-
tial resolutions, then the observed compressive measurements
y ∈ R

m can be represented as

y = �(X), (1)

where X ∈ R
B×M N denotes the rearrangement form of X ,

which is obtained by vectoring each band of X as a vector.
� is the random measurement operator, and it can be rep-
resented as � = DFP, where D is a random downsampling
operator, F is the Fourier transform, P is a random permutation
operator, and the mapping of � is R

B×M N → R
m , where

m = M N B ∗ SR (SR is the sampling ratio). If � satisfies the
restricted isometry property (RIP) [1], [34], the CS theory can
guarantee strict reconstruction of a compressive X from y. The
definition of such a compressive operator � has been proven to
conform to the RIP and is widely employed to solve the image
CS problem [16], [33]. The goal of HSI-CSR is to recover the
original X from the observed compressive measurements y.
It is worth noting that we chose a generator operator � to
introduce our proposed methods. However, the operator � in
our method can also be replaced with the real implementation
such as coded aperture snapshot spectral imaging (CASSI)
systems (as shown in the discussion).

C. Previous Work

Directly reconstructing X from compressive measure-
ments y is an ill-posed inverse problem, and the prior infor-
mation should be investigated to make the problem as well
posed. Based on the prior investigation, we can formulate the
HSI-CSR as follows:

min
X

1

2
�y − �(X)�2F + λJ (X), (2)

where J (X) denotes the regularization term to explore the
prior information of the HSI, and λ denotes a regularization
parameter to balance the fidelity term and the regularization
term.

From the linear mixture model [35], the strong corre-
lation of HSI exists in the spectral direction, which indi-
cates the low-rank prior of the HSI. Moreover, as mentioned
in [36]–[38], the image possesses a spatial local piece-
wise smooth structure. Based on these two important priors,
the combination of low-rank and TV regularizations was
employed to solve the HSI-CSR [10]. However, the above
low-rank and TV prior only capture the correlation and
smoothness in the spectral and spatial dimensions, respec-
tively. As reported in [39], the global correlation and local
smoothness of HSI occur in both spatial-spectral dimensions.
To simultaneously capture these priors in HSI, Wang et al. [11]
introduced the tensor Tucker decomposition and 3D weighted
TV regularizations to describe the prior for HSI-CSR. To fur-
ther explore the property of HSI, the nonlocal self-similarity
prior is explored as a powerful tool for HSI processing [21],
[40]. By taking full advantage of this tool, nonlocal low-rank
matrix recovery was used for HSI-CSR [16].

Although previous works have well exploited the priors for
HSI-CSR, several deficiencies exist. First, they only adopted

a single correlation prior (global spatial-spectral correlation or
nonlocal self-similarity) to reconstruct the HSI, which indi-
cates that it can promote the performance by simultaneously
considering the correlation of global spectral and nonlocal self-
similarity. Second, HSI is collected over hundreds of bands,
and the quantity of data is too large. Previous nonlocal-based
works mainly imposed the regularization term on the HSI,
which results in high computational costs. Therefore, we can
further improve the performance of HSI-CSR by remedying
these deficiencies.

III. PROPOSED SUBSPACE-BASED NONLOCAL

TENSOR RING DECOMPOSITION MODEL

A. Subspace Low-Rank Factorization of HSI

Due to the low-rank prior of HSI in the spectral dimen-
sion, the spectral vector (each column of X) underlies in
a b-dimensional subspace with b � B [20]. Therefore,
the subspace low-rank factorization of HSI is formulated as

X = EZ, (3)

where E ∈ R
B×b denotes an orthogonal basis matrix rep-

resenting the global subspace of spectral vectors. Moreover,
each row of Z can be reshaped as an image, and it denotes a
coefficient image.

The superiority of subspace representation has been proven
for HSI restoration [20], [21]. Based on the subspace fac-
torization of HSI, the exploitation of prior information for
HSI can be transformed to mine the prior information for
the reduced-dimensionality coefficient image (RCI) Z. The
orthogonal basis matrix E, as mentioned in [20], can be
learned by using singular value decomposition or the HySime
algorithm [25] from the low-quality data. Therefore, the reg-
ularization model (2) can be rewritten as

min
E,Z

1

2
�y − �(EZ)�2F + λJ (Z), s.t . ET E = I, (4)

where J (Z) is the regularization term related with to coeffi-
cient matrix Z.

B. Subspace-Based Nonlocal Tensor Ring Decomposition
Model

The subspace low-rank factorization is effective in capturing
the spectral correlation of HSI, and the spatial information
preservation can be transformed to constrain the coefficient Z.
Thus, the key problem is how to design an approximated reg-
ularization term for the RCI Z in (4). There are many regular-
izations that can be employed to constrain the RCI Z because it
maintains most of the characteristics with the original HSI X.
As each row of Z is an image, the common image priors,
such as total variation [41] and framelet regularization [18],
can be used to constrain it. However, verified by the results
of previous works [20], [21], [42], the nonlocal self-similarity
and the correlation among the coefficient image are the state-
of-the-art priors for maintaining the image information. In our
work, we also adopt a nonlocal strategy to regularize Z for
HSI-CSR. Under the assumption that nonlocal similar patches
have high correlations; the stacked data tensor has a low-rank
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characteristic. In reality, the stacked data may be degraded by
noise or have error, leading to deviation from the desirable
low-rank constraint. Thus, we can model the solution of the
data as Ri Z = Li + Wi , where Ri Z ∈ R

p2×b×d is the
i -th grouped nonlocal tensor and p and d are the spatial size
of the patch and the number of similar patches, respectively.
Li is the low-rank tensor, and Wi is the noise or error.
Therefore, the model (4) can be written as

min
E,Z,Li

1

2
�y −�(EZ)�2F + λ

∑
i

(
1

2
�Ri Z− Li�2F

+ J (Li )), s.t . ET E = I, (5)

where J (Li ) is the regularization used to describe the low-rank
property of tensor Li .

The formation of Ri Z ∈ R
p2×b×d can be summarised in

the following steps: 1) reshape the RCI Z ∈ R
b×M N as a

tensor Z ∈ R
M×N×b , 2) divide the tensor Z ∈ R

M×N×b as
an overlapped patch tensor Zi ∈ R

p×p×b , and 3) find d similar
patches for each i -th key patch in a neighborhood area by the
measure of the Euclidean distance, i.e., Dis(Zi ,Z j ) = �Zi −
Z j�F , where Z j is a candidate patch. The smaller Dis(Zi ,Z j )
indicates more similar of these two patches, and then it
can obtain the grouped nonlocal tensor RiZ ∈ R

p×p×b×d ;
4) reshape the nonlocal grouped tensor as Ri Z ∈ R

p2×b×d .
In the following, how to design the low-rank tensor approx-

imation for the grouped nonlocal patch is a key problem.
Since the grouped nonlocal tensor has a correlation in both
spatial-spectral and nonlocal dimensions, there are many
choices that can be used to constrain Li , such as weighted
nuclear norm minimization [21], [42], low-rank tensor decom-
position [43] and tensor Tucker decomposition [44]. Although
the mentioned low-rank approximation methods obtain the
approval results for HSI processing, there is still room for
improvement of tensor low-rank approximation. In our work,
we introduce a novel TR decomposition [26] to approximate
the grouped nonlocal tensor Li . TR decomposition approxi-
mates a high-dimensional tensor by using circular multilinear
products on a sequence of third-order tensor factors.

Definition 1 (TR Decomposition [26]): Assume that Y ∈
R

I1×I2×···×In is an nth-order tensor. The TR decomposition of
Y finds n underlying core tensors G = {G(1),G(2), · · · ,G(n)},
where G(k) ∈ R

rk×Ik×rk+1 , and the connection of the core
tensor G with each elementwise of Y can be represented by

Y(i1, i2, · · · , in) = Tr(G(1)(i1)G(2)(i2) · · ·G(n)(in))

= Tr

(
n∏

k=1

G(k)(ik)

)
, (6)

where Tr(·) is the trace operation for matrices, and G(k)(ik)
denotes the ik lateral slice matrix of G(k). Since Tr(·) is only
for the square matrix, the dimensions of the first and last
core in TR decomposition should satisfy r1 = rn+1. Based
on this definition, the vector r = [r1, r2, · · · , rn] is denoted
as TR rank. To simplify the representation of equation (6),
we denote the decomposition as Y = �([G]), where �([G])
is generated by [G], and each element of �([G]) is calculated
by (6). More details and properties of TR decomposition can
be found in references [26], [45].

In the following, we investigate why we employ
TR decomposition instead of traditional Tucker decomposition
to approximate the grouped nonlocal tensor. Assuming that
the Tucker rank of an nth-order tensor (Q ∈ R

I×I×···×I ) is
[R, R, · · · , R], then the Tucker decomposition of this tensor
can be formulated as

Q = S ×1 U1 ×2 U2 · · · ×n Un, (7)

where Uk ∈ R
I×R (k = 1, 2, · · · , n) and S ∈ R

R×R×···×R are
factor matrices and core tensor, respectively. First, according
to the definition of these two decompositions, the number of
variables of Tucker decomposition is much higher than that
of TR decomposition because the number of variables of TR
and Tucker decomposition is nIr2 (assume that all TR ranks
are equal) and Rn + nI R (the number increases exponentially
following its dimensions, and in general, r < R), respectively.
Second, from the circular dimensional permutation invariance
property of TR (see Lemma 1), the factor of TR can be
regarded as equivalently and circularly rotated in the trace
operation, but the Tucker decomposition strategy cannot rotate
the core tensor. Third, the representation framework of TR is
tensor-by-tensor; thus, the original data structure can be better
preserved.

Furthermore, we focus on a 3D HSI X ∈ R
M×N×B analysis

to further illustrate the priority of TR representation. There
are many materials in each HSI data, and the spectral vector
of HSI exists in a low-dimension subspace. Based on the
Tucker decomposition, factor U3 ∈ R

B×R represents the
learned global basis for all spectral vectors or all materials.
However, factor U3 ∈ R

B×R cannot separately represent the
basis for each material. Compared with Tucker decomposition,
TR representation can learn the factor tensor G(3) ∈ R

r3×B×r1 ,
where r3 and r1 are the number of materials and the subspace
dimension of each material in HSI, respectively. Therefore,
TR decomposition is effective in separately learning the basis
for every materials. The other dimensions of the tensor can
be analyzed analogously, thus illustrating the advantage of
TR over Tucker decomposition for tensor approximation.

As a result, the proposed SNLTR for HSI-CSR is presented
as

min
E,Z,Li ,Gi

1

2
�y − �(EZ)�2F + λ

∑
i

(
1

2
�Ri Z− Li�2F ),

s.t . ET E = I, Li = �([Gi ]). (8)

The proposed method can effectively capture the spectral
correlation by subspace factorization, and the spatial nonlocal
self-similarity and the high correlation among all coefficient
images can be described by nonlocal TR decomposition.
Synthesizing this superiority, the proposed SNLTR can achieve
better results for HSI-CSR.

C. Optimization

As the model (8) is hard to directly optimize, the alternating
minimization is employed to optimize the SNLTR model.
The alternating minimization scheme means that we alterna-
tively optimize one variable while fixing the other variables.
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Therefore, we can iteratively optimize the following two
subproblems.

1) Nonlocal TR decomposition Li and Gi subproblems: We
optimize these problems while fixing other variables E and Z
with the following model:

min
Li ,Gi

1

2
�Ri Z− Li�2F , s.t . Li = �([Gi ]).

This problem can be solved in two steps. First, the TR cores
Gi can be optimized by solving the following problem:

min
Gi

1

2
�Ri Z−�([Gi ])�2F . (9)

When we obtain the TR cores Gi , then Li is achieved by
Li = �([Gi ]). Obviously, the model (9) is a nonconvex
problem for Gi . To optimize the nonconvex problem effec-
tively, we employ proximal alternating minimization (PAM)
[46], [47] to solve it.

Before solving (9), we introduce the proximal operator and
then transform the model (9) into its equivalent form. Then,
the problem (9) is transformed as

min
Gi

1

2
�Ri Z−�([Gi ])�2F +

ρ

2
�Gi − (Gi )

j�2F , (10)

where (Gi )
j denotes the last results of Gi , and ρ is a positive

proximal parameter. To solve problem (10), we first introduce
the mathematical operation and lemma of TR decomposition.

Definition 2 (Tensor Multilinear Product [26]): Let G(k) ∈
R

rk×Ik×rk+1 and G(k+1) ∈ R
rk+1×Ik+1×rk+2 be two adjacent core

tensors, and then the multilinear product between G(k) and
G(k+1) is represented as G(k,k+1) and formulated as

G(k,k+1)(( jk − 1)In + ik) = G(k)(ik)G(k+1)( jk),

for ik = 1, · · · , Ik, jk = 1, · · · , Ik+1, and where G(k,k+1) ∈
R

rk×Ik Ik+1×rk+2 .
According to the tensor multilinear product of Definition 2,

we can define the operator � in Y = �([G]) as

Y(i1, i2, · · · , in) = Tr([G](:, i1 + (i2 − 1)I1

+ · · · + (in − 1)I1 I2 · · · In−1, :)),

where [G] =
n∏

k=1
G(k) = G(1,2,··· ,n) ∈ R

r1×I1 I2···In×r1 is the

multilinear product of all the TR core tensors.
Lemma 1 (Circular Dimensional Permutation Invariance

[26]): For the n-order tensor Y ∈ R
I1×I2×···×In , if its TR

decomposition is Y = �({G(1),G(2), · · · ,G(n)}), then
←−Y k ∈

R
Ik×Ik+1 ···×In×I1×···×Ik−1 circularly shifts the dimensions of Y

by k. Then we have the following relation

←−Y k = �({G(k),G(k+1), · · · ,G(n),G(1), · · · ,G(k−1)}).
With Lemma 1, we can obtain the following equation:

Y<k> = G(k)
(2)(G

( �=k)
<2>)T , (11)

where G( �=k)
<2> is the second mode-2 unfolding of

G(k+1,k+2,··· ,n,1,··· ,k−1) ∈ R
rk+1×∏n

i=1,i �=k Ii×rk representing a
subchain tensor generated by merging all but the k-th core

tensor. Based on the equality of (11), we can iteratively solve
G(u)

i via the least square problem as follows:
(G(u)

i ) j+1 = fold2((Ri Z<u>(G( �=u)
i,<2>) j + ρ(G(u)

i,(2))
j )

((G( �=u)
i,<2>) j,T (G( �=u)

i,<2>) j + ρI)−1), (12)

where I is the identity matrix, and u = 1, 2, 3. After obtaining
the TR cores Gi , Li can be computed as follows:

Li = �([Gi ]).
2) Subspace low-rank factorization E and Z subproblems:
After achieving the low-rank TR approximation of Li ,
we solve the subspace low-rank factorization E and Z sub-
problems as follows:

min
E,Z

1

2
�y − �(EZ)�2F + λ

∑
i

(
1

2
�Ri Z− Li�2F ),

s.t . ET E = I. (13)

We use the alternating direction method of multipliers
(ADMM) [48] to optimize the problem (13). The advantage of
ADMM is that it can transform (13) into simple subproblems.
By introducing one auxiliary variable U, we transform (13)
into an equivalent model

min
E,Z,U

1

2
�y −�(U)�2F + λ

∑
i

(
1

2
�Ri Z− Li�2F )+ δI (ET E),

s.t . U = EZ,

where δI (·) is the indicator function. Then, the corresponding
augmented Lagrangian function is

min
E,Z,U,W

1

2
�y − �(U)�2F + λ

∑
i

(
1

2
�Ri Z− Li�2F )

+δI (ET E)+ < W, U − EZ > +β

2
�U− EZ�2F , (14)

where β is a positive penalty parameter, and W is the
Lagrangian multiplier. The solution of (14) includes the fol-
lowing subproblems:

(1) E-subproblem: The update of E is formulated as follows:
min

E
< W, U− EZ > +β

2
�U − EZ�2F + δI (ET E).

The close-form solution is

E = L(V)R(V)T , (15)

where L(V) and R(V) are the left and right singular matrices
of the object V = (U+ W

β )ZT , respectively [43].
(2) Z-subproblem: The update of Z is formulated as follows:

min
Z

λ
∑

i

(
1

2
�Ri Z−Li�2F )+< W, U−EZ > +β

2
�U− EZ�2F ,

which is a quadratic optimization problem, and the solution
of Z is

Z = unfold2((λ
∑

i

RT
i Ri + βI)−1(λ

∑
i

RT
i Li + βM)),

(16)

where M is a 3D tensor of reshaping ET (U+ W
β ).
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Algorithm 1 SNLTR Method for HSI-CSR

(3) U-subproblem: The update of U is formulated as
follows:

min
U

1

2
�y −�(U)�2F+ < W, U − EZ > +β

2
�U− EZ�2F .

This problem is also a quadratic optimization problem, and the
solution can be obtained by using the preconditioned conjugate
gradient technique to the following equation

(�T � + βI)U = (�T y + β(EZ− W
β

)). (17)

(4) Finally, we update the multiplier as follows:
W =W+ β(U− EZ). (18)

In summary, the whole optimization procedure for SNLTR
is summarized in Algorithm 1. It is worth noting that
we update the number of subspaces in each iteration as
recommended by He et al. [21], because it can preserve
more detailed information with the increment of the iterative
number.

IV. EXPERIMENTAL RESULTS

To validate the effectiveness of our proposed SNLTR
method, we experiment on four popular and standard HSI
datasets with five different sampling ratios (SR), i.e., 0.02,
0.05, 0.1, 0.15, and 0.2. The datasets include the Columbia

MSI dataset (CAVE,1) Harvard dataset (Harvard,2) Wash-
ington DC Mall dataset (WDC,3) and Hyperspectral Digital
Imagery Collection Experiment Urban dataset (Urban.4) The
CAVE and Harvard datasets are from a computer version
society, and the WDC and Urban are remote sensing HSI
datasets. Four random measurement HSI-CSR methods are
employed as baselines in our experiments, including the
DCT method, joint nuclear/TV norm minimization method
(JTTV) [10], joint tensor decomposition and reweighted TV
regularization method (JTenRe3-DTV) [11], hyper-Laplacian
regularized nonlocal low-rank matrix recovery method
(HyNLRMR) [16]. Although DCT is a common CS approach,
we compare it to show that the better results are because of
our method and not because of the initialization. Moreover,
JTTV, JTenRe3-DTV, and HyNLRMR are also based on
low-rank models and are related to our method. Furthermore,
to show the superiority of TR decomposition, we compare
our SNLTR method with Tucker decomposition under our
subspace nonlocal framework (SNLTucker). All the experi-
ments are performed in MATLAB R2019a employing a laptop,
with 32 GB RAM, an Intel (R) Core (TM) i7-8750H CPU,
and @2.20.

To evaluate the performance, visual and quantitative com-
parisons are employed to show the results. The quantitative
indices include the peak signal-to-noise ratio (PSNR), structure
similarity (SSIM) [49], feature similarity (FSIM) [50] and
spectral angle mapper (SAM) [51]. The first two indices are
objective assessments for image reconstruction. FSIM is used
to describe the perceptual consistency with the clean image.
SAM is used to evaluate the spectral distortion. Generally,
larger values of PSNR, SSIM, and FSIM represent better
reconstruction performance. In contrast, a smaller SAM indi-
cates better performance of spectral information preservation.

A. Results on the CAVE Dataset

There are 32 scenes in the CAVE dataset, and each scene
contains 512 × 512 pixels with 31 spectral bands. In this
dataset, we select four different scenes (Toy, Balloons, Feath-
ers, and Painting) in which the subimages with a size of
300× 300× 31 are extracted for testing. We present two rep-
resentative cases to show the visual reconstructed comparison.

Fig. 1 and Fig. 2 show the reconstructed images and
errors (the difference between the original image and the
reconstructed image) of different comparison methods under
SR = 0.05 on the Toy and Feathers scenes. We find that all test
methods can well reconstruct the spatial structure. However,
DCT cannot preserve the image details, which can be found
in the enlarged box shown in Figs. 1(a) and 2(a). Moreover,
the reconstructed image is smoothed by the JTTV method,
as shown in Figs. 1(b) and 2(b). HyNLRMR obtains some
artificial information under a low sampling ratio. By compar-
ing the results of all methods, we find that the subspace-based
methods SNLTucker and SNLTR achieve the best results.

1http://www1.cs.columbia.edu/CAVE/databases/multispectral
2http://vision.seas.harvard.edu/hyperspec/download.html
3https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
4http://www.tec.army.mil/hypercube
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Fig. 1. The first and second rows are the false-color reconstructed images (composed of bands 31, 20, 10) and error images of the competing methods under
SR = 0.05 on the Toy dataset.

Fig. 2. The first and second rows are the false-color reconstructed images (composed of bands 22, 14, 1) and error images of the competing methods under
SR = 0.05 on the Feathers dataset.

From Figs.1(f) and 2(f), it is evident that our SNLTR method
provides the best result in reconstructing all information of
the original image. For some methods, it is difficult to find
the obvious difference from the reconstructed visual results.
To better show the superiority of the reconstructed results,
error images can be employed for comparison. The second
rows of Fig. 1 and Fig. 2 presents the error results of all
methods. From the results, we find that the subspace-based
method obtains smaller error results, which again demonstrates
the superiority of the subspace-based method over the methods
that directly employ priors to the original image. Further-
more, by comparing the results of SNLTucker and SNLTR,
we can see that SNLTR obtains better results than SNLTucker
because SNLTR achieves a smaller error, which also illus-
trates the advantage of TR compared to traditional Tucker
decomposition.

Table I lists the quantitative results of all test methods
under the five sampling ratios for the CAVE dataset recon-
struction, which is obtained by averaging the four scenes for
each sampling ratio. The best results are highlighted in bold.
From the table, our SNLTR achieves an obvious improvement

over other methods except for SR = 0.02. Specifically, our
TR decomposition can significantly outperform the Tucker
decomposition method with respect to all quantitative results
when SR is larger than 0.02, which illustrates the superiority of
TR decomposition over Tucker decomposition. Fig. 3 presents
the PSNR values on the average of four datasets for each
band. It is clear that the proposed SNLTR can achieve much
higher PSNR values compared to other methods for all bands
on SR = {0.05, 0.1, 0.15, 0.2}, indicating the robustness of our
method for the improvement of CS reconstruction. The SAM
values in Table I reflect the superiority of our SNLTR method
for preserving the spectrum signature after HSI-CSR in most
cases. Fig. 4 presents the spectrum signatures of one pixel on
the Toy and Feathers datasets under SR = 0.05 before and
after reconstruction. It can also be observed that the proposed
SNLTR method well preserves the spectrum signature since
the reconstructed curves are close to the original curves.

B. Results on the Harvard Dataset

The Harvard dataset [52] consists of 50 hyperspec-
tral images of indoor and outdoor scenes under daylight
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Fig. 3. PSNR values of each band on the CAVE dataset at different sampling ratios.

Fig. 4. Spectrum profiles of pixels in SR = 0.05 before and after reconstruction. Top: pixel (150, 150) on the Toy dataset. Bottom: pixel (50, 50) on the
Feathers dataset.

TABLE I

QUANTITATIVE RESULTS OF ALL TEST METHODS UNDER THE FIVE

SAMPLING RATIOS FOR THE CAVE DATASET RECONSTRUCTION

illumination, and an additional 25 images under artificial and
mixed illumination. Each image in this dataset has the same
size of 1040 × 1392× 31. Since there are many images and
these images are too large, we also select four different scenes
(img1, imga6, imgb8, imgd3) in which subimages with the
spatial size 300× 300 are extracted for testing.

Figs. 5 and 6 show the reconstructed visualizations of
img1 and imga6 scenes under SR = 0.05, respectively. As a
display, DCT cannot completely reconstruct the image details
and structures. JTTV and JTenRe3DTV recover the main
image characteristics, but the image texture part cannot be
preserved well, as shown in the enlarged box. The results

TABLE II

QUANTITATIVE RESULTS OF ALL TEST METHODS UNDER THE FIVE

SAMPLING RATIOS FOR THE HARVARD DATASET RECONSTRUCTION

reconstructed by HyNLRMR create artifact information, and
the image details are destroyed, such as the flower part
shown in Fig. 6(d). Although SNLTucker obtains better recon-
structed results compared with DCT, JTTV, JTenRe3DTV, and
HyNLRMR, it slightly smooths the results displayed in the
enlarged box. In contrast, either from the reconstructed or error
results, SNLTR achieves the best performance, reconstructing
and preserving the image details and textures.

Table II lists the quantitative results of five different sam-
pling ratios on the Harvard dataset. We can observe the results
corresponding to the CAVE dataset in which the SNLTR
method obtains the better results in terms of PSNR, SSIM,

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 03,2020 at 11:41:41 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: HSI-CSR USING SUBSPACE-BASED NONLOCAL TENSOR RING DECOMPOSITION 6821

Fig. 5. The first and second rows are the false-color reconstructed images (composed of bands 30, 20, 13) and error images of the competing methods under
SR = 0.05 on the img1 dataset.

Fig. 6. The first and second rows are the false-color reconstructed images (composed of bands 31, 21, 7) and error images of the competing methods under
SR = 0.05 on the imga6 dataset.

FSIM, and SAM in the last four sampling ratios. Fig. 7 plots
the PSNR value of each band for the Harvard dataset, and
it is easy to see that our SNLTR method achieves higher
values in most bands except for SR = 0.02. The spectrum
profiles of pixels on img1 and imga6 under SR = 0.05 are
presented in Fig. 8. The subspace nonlocal tensor decom-
position framework-based methods SNLTucker and SNLTR
achieve satisfactory spectrum preservation compared to the
other approaches.

C. Results on the WDC Dataset

The Washington DC Mall dataset is selected as the third
dataset for HSI-CSR experiments. This dataset was collected
by the Hyperspectral Digital Imagery Collection Experiment
(HYDICE), and the original size is 1208× 307× 191. In our
experiment, we extract a subimage with a size of 256×256×
191 for testing. We also test five sampling ratios to present
the results of all methods.

Fig. 9 presents the reconstructed results of SR = 0.05 on
the WDC dataset. DCT fails to reconstruct the image structure

and blurs the image details. Although JTTV, JTenRe3DTV,
HyNLRMR, and SNLTucker present satisfactory visual results,
they obtain worse error images compared to our SNLTR
method. Moreover, as shown in the enlarged box, HyNLRMR
generally changes the image contrast, and the image structure
is blurred by TV-based methods JTTV and JTenRe3DTV.
In summary, combining the reconstructed and error images,
we can conclude that our SNLTR achieves superior results
compared to other methods on the WDC dataset.

Table III presents the quantitative indices of five different
sampling ratios on the WDC dataset. HyNLRMR can obtain
satisfactory results in high sampling ratios, but poor results
are shown in the low sampling ratios, which indicates the
instability of this method. From the results, we can observe
that the SNLTR method achieves the best results in terms of
PSNR, SSIM, FSIM, and SAM in all sampling ratio cases,
indicating that our SNLTR method can not only effectively
reconstruct the original spatial structure but also preserve the
spectral information. Fig. 10 illustrates the PSNR value of
each band for the WDC dataset, and it is evident that our
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Fig. 7. PSNR values of each band on the Harvard dataset at different sampling ratios.

Fig. 8. Spectrum profiles of pixels in SR = 0.05 before and after reconstruction. Top: pixel (100, 70) on the img1 dataset. Bottom: pixel (100, 50) on the
imga6 dataset.

Fig. 9. The first and second rows are the false-color reconstructed images (composed of bands 65, 117, 189) and error images of the competing methods
under SR = 0.05 on the WDC dataset.

SNLTR method achieves higher values than the other methods
for almost every band in all sampling ratios, which shows
the robustness of our method for all bands. Fig. 11 plots the
spectrum profiles of pixels (100, 100) in SR = 0.05 before and
after reconstruction on the WDC dataset. DCT and HyNLRMR
cannot preserve the spectrum information in most bands, while
JTTV, JTenRe3DTV, and SNLTucker slightly deviate from the
original curve in some bands. Moreover, the proposed SNLTR
achieves a more reasonable result, approximately preserving
all spectrum signature.

D. Results on the Urban Dataset

In real HSI, there is some noise in the image. To test the
robustness of our method for noise, we select the HYDICE

urban dataset as the fourth dataset. The original size of the
data is 307 × 307× 210, and we extract a subimage of size
200× 200× 184 for testing. The removed bands are seriously
contaminated by atmospheric and water absorption [53], which
cannot provide useful information.

Fig. 12 shows the reconstructed images and error images
of the Urban dataset under SR = 0.05. JTenRe3DTV
and HyNLRMR blur the image structure shown in
Fig. 12(c) and (d). Moreover, HyNLRMR changes the image
contrast presented in the enlarged box. DCT still can-
not reconstruct the image in a low sampling ratio. JTTV,
SNLTucker, and SNLTR obtain similar visual results. How-
ever, the comparison of error images illustrates the superiority
of our SNLTR method. From the second row of Fig. 12,
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Fig. 10. PSNR values of each band on the WDC dataset at different sampling ratios.

TABLE III

QUANTITATIVE RESULTS OF ALL TEST METHODS UNDER THE FIVE

SAMPLING RATIOS FOR THE WDC DATASET RECONSTRUCTION

we observe that the proposed SNLTR achieves smaller errors
compared with the other methods.

Table. IV lists the four evaluation indices for the Urban
dataset under the five different sampling ratios. In the table,
we obtain similar quantitative compared results with the WDC
dataset, and the proposed SNLTR method also achieves the
best results in all cases. The PSNR values over each band
in all cases are presented in Fig. 12. From these results,
we can observe that the proposed SNLTR outperforms all
other HSI-CSR methods in PSNR values for most bands on the
Urban dataset. Fig. 14 presents the spectrum profiles of pixels
(50, 150) in SR = 0.05 before and after reconstruction on
the Urban dataset. SNLTR obtains the lowest error spectrum
curves compared to the other methods since the reconstructed
curve is closer to the original curve.

In summary, four representative datasets with different
CS sampling ratios illustrate that the proposed SNLTR outper-
forms existing related HSI-CSR approaches by comparing the
visual and quantitative results. Although our SNLTR method
cannot achieve the best results in the CAVE and Harvard
datasets when SR = 0.02, the significant improvement of our
method is shown in the last two remote sensing HSI datasets
(with hundreds of spectral bands) because there are only
31 bands in the CAVE and Harvard datasets; thus, the spectral

TABLE IV

QUANTITATIVE RESULTS OF ALL TEST METHODS UNDER THE FIVE

SAMPLING RATIOS FOR THE URBAN DATASET RECONSTRUCTION

correlation is not strong compared with remote sensing HSI
data that have hundreds of bands. When SR = 0.02 in
the CAVE and Harvard datasets, the observed compressive
measurements are limited, which results in the low accuracy
of nonlocal TR decomposition. In the case of SR = 0.02 in
the remote sensing HSI, the subspace low-rank decomposition
used to capture the high spectral correlation can help the
performance of the nonlocal TR decomposition term, and the
iterative estimation strategy would benefit from each other.

E. Discussion of Model Analysis

Before running Algorithm 1 of the SNLTR method for
HSI-CSR, several related parameters should be selected,
including the regularization parameter λ, proximal parameter
ρ, penalty parameter β, subspace updated parameter δ, patch
size p, number of nonlocal similar patches d , and TR rank
[r1, r2, r3]. Although many parameters should be adjusted,
they are very robust and can be set to the same value in all
experiments. We set the proximal parameter ρ to ρ = 1 in all
experiments, and we empirically set β = 0.1 for the penalty
parameter in all experiments. Moreover, the subspace update
parameter is set as δ = 2 in all experiments, as introduced
in [21]. In the following, we analyze the sensitivity of other
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Fig. 11. Spectrum profiles of pixels (100, 100) in SR = 0.05 before and after reconstruction on the WDC dataset.

Fig. 12. The first and second rows are the false-color reconstructed images (composed of bands 132, 87, 44) and error images of the competing methods
under SR = 0.05 on the Urban dataset.

Fig. 13. PSNR values of each band on the Urban dataset at different sampling ratios.

Fig. 14. Spectrum profiles of pixels (50, 150) in SR = 0.05 before and after reconstruction on the Urban dataset.

parameters and presernt a strategy on how it is chosen.
The Toy dataset with two different sampling ratios, i.e., low
sampling ratio and high sampling ratio, are adopted as the
experimental cases, and we employ the PSNR index as the
evaluation measure to analyze the parameter influence.

1) Regularization parameter λ: The parameter λ is
employed to balance the fidelity term and the nonlocal regular-
ization term. Fig. 15(a) shows the relationship of the parameter
λ with PSNR values at two different sampling ratios. The
horizontal scale 0 represents our method without the nonlocal

TR decomposition term. With λ larger than 0, the PSNR value
achieves rapid improvement, which indicates the effectiveness
of the nonlocal TR decomposition term regularization. When
λ continually increases, the PSNR value exhibits a downtrend.
In our work, when SR ≤ 0.1, we empirically set λ = 10−5.
λ = 5 ∗ 10−4 is fixed when SR > 0.1 in the experiments.

2) Patch size p: Fig. 15(b) presents the PSNR value with
patch size p under two sampling ratios. The performance is
poor when the patch size is small ( p = 3). When the patch size
is increased from 3 to 5, we observe that the PSNR obtains
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Fig. 15. The change in PSNR values with different parameter analyses at two sampling ratios. (a) λ, (b) patch size p, and (c) the number of similar patches d,
(d) TR rank under SR = 0.05, and (e) TR rank under SR = 0.15.

significant improvement. However, it shows a decrease in the
PSNR value with a larger patch size. Therefore, we empirically
fix the patch size to 5 in all experiments.

3) The number of similar patches d: The curve of PSNR
with the number of similar patches d is presented in Fig. 15(c).
We can easily see that the best results of two sampling ratios
are achieved in the case of d = 50. Thus, the number of
similar patches is empirically set to d = 50 in all tests.

4) TR rank r: The TR rank is a vital parameter for
representing the correlation of the grouped tensor. There are
three parameters in the TR rank, and we set the TR ranks of the
spectral dimension and the nonlocal dimension the same and
denote them as r2 to simplify the analysis; then, the TR rank is
set as r = [r1, r2, r2]. Fig. 15(d) and (e) present the sensitivity
analysis of PSNR with different TR ranks at SR = 0.05 and
SR = 0.15, respectively. From these two figures, we find that
a smaller r2 should be selected when the sampling ratio is low.
In contrast, better results are shown with a larger r2 in the high
sampling ratio. To consider the simplicity of rank selection
and performance of the reconstructed results, we empirically
set TR rank r = [5, 3, 3] for the cases of SR ≤ 0.1. For
SR > 0.1, we set as r = [5, 5, 5]. In summary, although
there are many parameters, the related parameters do not need
to be manually tuned, and the proposed SNLTR can achieve
better reconstruction results than other models under different
sampling ratios.

5) Computational efficiency: Table V lists the running time
of the Toy dataset under two sampling ratios. The HyNLRMR
method requires the longest time since it employs the nonlocal
strategy to image itself. Since our SNLTR method performs the
outer iteration and nonlocal strategies while DCT, JTTV, and
JTenRe3DTV only employ common spatial-spectral priors, our
method requires a longer time. Although our method is not
the fastest, it achieves the best-reconstructed results compared
with the other methods.

6) Convergence analysis: Finally, we present a numerical
experiment to show the convergence behavior of our method.
Fig. 16 shows the curves of the relative change in X under
SR = 0.05 on the Toy dataset. Since our method involves
inner iterations and outer iterations, Fig. 16(a) and (b) present
the convergence curves of these two iterations. From these two
curves, we can find the convergent behavior of the proposed
SNLTR methods.

In addition to discussing the parameter analysis of the
model, the following two cases should be further discussed
to illustrate the effectiveness and credibility of the proposed

Fig. 16. Convergence analysis of the algorithm in term of relative change.
(a) Inner ADMM iteration, (b) outer iteration.

TABLE V

RUNNING TIME (IN SECONDS) OF THE TOY DATASET

UNDER TWO SAMPLING RATIOS

method. The first is the HSI-CSR performance under noisy
conditions, and the other is applying our proposed framework
to snapshot-hyperspectral compressive imaging systems.

7) HSI-CSR under different levels of noise: To show the
HSI-CSR performance of the proposed method under noisy
conditions, additive Gaussian independent and identically dis-
tributed noise is added to measurements with a signal-to-noise
ratio (SNR) {20 dB, 25 dB, 30 dB, 35 dB, 40 dB}. Fig. 17
presents the PSNR curves of all methods on the Toy datatset
under different noise levels and different SRs. From the results,
the CS-recovery performances of all methods are influenced by
the low SNR. Moreover, the proposed SNLTR always provides
higher PSNR values than the other methods, which indicates
the robustness to noise of our method.

8) Snapshot compressive hyperspectral image: In our
work, we mainly focus on the random measurement
compressive HSI. To extend the proposed SNLTR framework,
we incorporate our method in the recovery of com-
pressed images via CASSI [54]. The outstanding snapshot-
hyperspectral compressive imaging methods GAP-TV [55] and
DeSCI [54] are used for comparison. Following the same
experimental setting in DeSCI, the original Toy hyperspectral
image (512×512×31) is selected as the simulated experiment,
and the averaged results of PSNR and SSIM are shown
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Fig. 17. The change in PSNR values with different levels of noise at two
sampling ratios.

TABLE VI

THE RESULTS OF PSNR AND SSIM BY DIFFERENT

METHOD ON THE SIMULATED TOY DATASETS

Fig. 18. reconstructed images of band 18 of the competing methods under
systems CASSI on the Toy dataset.

in Table VI. Moreover, the reconstructed images of band 18 are
shown in Fig. 18. It can be seen clearly that SNLTR provides
better reconstructed results than GAP-TV and DeSCI, which
indicates that the proposed method can be applied to other
sensing models.

V. CONCLUSION

In this article, we proposed a novel subspace-based nonlocal
tensor ring decomposition method for HSI-CSR. Our method
integrated two important priors, i.e., global spectral low-rank
and spatial nonlocal self-similarity properties, to reconstruct
the original HSI from a few compressive measurements.

Different from previous works that employed low-rank reg-
ularization to constrain the HSI, we enforced the spectral
low-rank characterization by subspace representation. More-
over, the nonlocal self-similarity regularization of the related
coefficient image was introduced to preserve the spatial struc-
ture of the reconstructed HSI, and the grouped 3D nonlocal
tensor can be effectively captured by TR decomposition.
A series of experimental results were reported to illustrate
that the proposed SNLTR significantly outperformed other
competing approaches for HSI-CSR. In the future, we will
incorporate the proposed framework into various compressive
hyperspectral imaging [28]–[30] tasks to enhance its capability
of HSI-CSR.
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