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Abstract— As a preprocessing step, hyperspectral image (HSI)
restoration plays a critical role in many subsequent applications.
Recently, based on the framework of subspace representation
and low-rank matrix/tensor factorization (LRMF/LRTF), many
single-factor-regularized methods add various regularizations on
the spatial factor to characterize its spatial prior knowledge.
However, these methods neglect the common characteristics
among different bands and the spectral continuity of HSIs.
To tackle this issue, this article establishes a bridge between
the factor-based regularization and the HSI priors and proposes
a double-factor-regularized LRTF model for HSI mixed noise
removal. The proposed model employs LRTF to characterize
the spectral global low rankness, introduces a weighted group
sparsity constraint on the spatial difference images (SpatDIs) of
the spatial factor to promote the group sparsity in the SpatDIs of
HSIs, and suggests a continuity constraint on the spectral factor
to promote the spectral continuity of HSIs. Moreover, we develop
a proximal alternating minimization-based algorithm to solve
the proposed model. Extensive experiments conducted on the
simulated and real HSIs demonstrate that the proposed method
has superior performance on mixed noise removal compared with
the state-of-the-art methods based on subspace representation,
noise modeling, and LRMF/LRTF.

Index Terms— Factor-based regularization (FR), hyperspectral
image (HSI), low-rank tensor factorization (LRTF), mixed noise
removal, proximal alternating minimization (PAM).

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) reflect different imag-
ing effects of one real scene under hundreds of con-

tiguous spectral bands. Compared with gray-scale images,
HSIs contain a wealth of spatial and spectral information,
making them widely applied in various applications [1], such
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as natural disaster monitoring, terrain detection, and land use
analysis. Unfortunately, real-world HSIs always suffered from
all sorts of noise, including the Gaussian noise, salt and
pepper noise, deadlines, and stripes. The existence of the
abovementioned noise greatly reduces the quality of HSIs,
resulting in the infeasibility of subsequent applications, such
as classification [2]–[4], unmixing [5]–[7], fusion [8], and
target detection [9]. Hence, restoring the clean HSI from
a noisy observation, i.e., HSI restoration, plays a critical
role in HSI applications. Deeply exploring and accurately
describing the spatial and spectral knowledge in HSIs are
the core issues of HSI restoration. Among the currently
HSI restoration methods, low rankness, local continuity, and
nonlocal self-similarity are the most frequently researched HSI
priors [10]–[23].

Since each band of HSIs can be regarded as a gray-scale
image, the simplest and most direct way for HSI restora-
tion is to employ the traditional gray-scale image restoration
methods, such as NLM [24], K-SVD [25], BM3D [26],
and WNNM [27], to restore the target HSI band-by-band.
However, the most shortcoming of this kind of method is
the neglect of the spectral correlations, which is crucial prior
knowledge for improving the performance of HSI restora-
tion. Consequently, a variety of efficient methods have been
introduced to simultaneously consider spatial and spectral
prior, leading to a great improvement in restoring results.
For example, to consider spatial information and spectral
noise differences simultaneously, Yuan et al. [28] introduced
a spectral–spatial adaptive total variation (TV) to HSI restora-
tion and obtained a promising result. By supposing that the
first several components output by the principal component
analysis (PCA) contain the major information of images, Chen
and Qian [29] proposed an HSI restoration method, which first
performs PCA on the noisy HSI, then employs the bivariate
wavelet thresholding and a wavelet transform algorithm to
remove the noise in the last several components, and finally
obtains the restored HSI via inverse PCA. Besides, to exploit
nonlocal self-similarity in both spatial and spectral domains,
many restoration methods regarded the group of similar 3-D
cubes as the basic unit for restoring. Examples include non-
local groupwise spectrum-PCA [30], nonlocal tensor dictio-
nary learning [31], and nonlocal tensor ring decomposition
[32]. To utilize the spectral global low rankness and spatial
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Fig. 1. Group sparsity along the spectral mode of the spatial difference images and the proposed regularization terms based on the spatial factor B. (a) HSI
Washington DC Mall X ∈ R

256×256×170, which can be factorized as B ×3 A, where B ∈ R
256×256×r , A ∈ R

170×r , and r � 170. (b) Images obtained by
performing spatial difference operators, where D1 and D2 are the first-order difference matrixes. (c) Mode-3 unfolding matrices of the corresponding difference
images. (d) Regularization terms on the original HSI X used to promote the group sparsity. (e) Regularization terms on the factor B used to replace the
regularization terms on the original HSI X .

nonlocal self-similarity, under the framework of subspace
representation, Zhuang and Bioucas-Dias [33] employed the
BM3D to eigen images denoising, and He et al. [34] embedded
the WNNM to eigenimages denoising while updating the
subspace iteratively. However, the aforementioned methods
only focus on removing one type of noise, especially the
Gaussian noise. However, in most realistic scenarios, the noise
in HSIs usually manifests as a mixture of several kinds of
noise.

Recently, an increasing number of researchers have been
putting great effort into mixed noise removal to adapt to real
noise situations. Based on the low-rankness prior hypothesis,
Zhang et al. [35] made the first attempt to employ low-
rank matrix recovery (LRMR)-based framework to remove
the mixed noise. Specifically, this method first separates the
noisy HSI as overlapped full-band 3-D cubes, then unfolds 3-D
cubes to matrices along the spectral mode, and finally uses
the LRMR-based framework to restore unfolding matrices.
Consequently, to enhance the performance of LRMR, a series
of low-rank matrix approximation (LRMA)-based methods
introduced nonconvex functions to approximate the rank of
the unfolded HSIs [36], [37]. However, LRMA-based methods
involve the singular value decomposition (SVD), leading to
high computational complexity. To tackle this issue, low-
rank matrix factorization (LRMF) is used to the HSI mixed
noise removal problem with several flexible noise distributions
hypothesis, such as a mixture of independent and identically
distributed (i.i.d.) exponential power distributions [38] and a
mixture of non-i.i.d. Gaussian distributions [39]. By regarding
HSIs as third-order tensors, a large number of methods used
the tensor decompositions/tensor rank minimization, such as
the Tucker decomposition [40], [41], PARAFAC decomposi-
tion [42], and tensor-SVD [43], [44], to exploit the global
low rankness of HSIs. Among them, Fan et al. [43] assumed
that the clean HSI is a low-tubal-rank part and introduced an
HSI mixed noise removal model by minimizing the convex
relaxation of the tubal rank. Zheng et al. [44] subsequently
proposed a new tensor rank, i.e., tensor fibered rank, to more
flexibly and accurately explore the low rankness of HSIs,
achieving a great improvement in mixed noise removal. How-
ever, most of the aforementioned methods only considered the

low rankness and, thus, cannot to exhaust the intrinsic potential
of HSIs, leading to a room for further enhancement.

To further boost the denoising performance, many
researchers proposed a variety of HSI mixed noise removal
models based on the framework of the convolutional neural
network (CNN) [45]–[48], which has the powerful nonlinear
fitting and feature expression ability. For example, Chang
et al. [45] proposed a CNN-based method by modeling the
spatial and the spectral features by the dilated convolution and
multichannel filters, respectively. Zhang et al. [46] introduced
a method based on the spatial–spectral gradient network,
which is capable of extracting the directional feature of
sparse noise and exploring abundant spectral information of
HSIs. Meanwhile, many methods considered not only the
low-rankness prior but also the local continuity and nonlocal
self-similarity priors. For example, He et al. [49] proposed
a method, which employed LRMF to explore the spectral
low rankness while applying the spatial TV to each band of
HSIs to exploit the spatial local continuity. To further take the
spectral local continuity into consideration, the spatial–spectral
TV has been proposed and integrated into various low-rank-
based models, such as weighted nuclear norm [50] and low-
rank Tucker decomposition (LRTD) [51], [52]. Besides, Chen
et al. [53] conducted a group sparsity regularization on spatial
difference images under the framework of LRTD, obtaining
a promising result. However, the regularization terms in the
aforementioned methods were added to HSIs, resulting in high
computational complexity.

To reduce the computational complexity, several single-
factor-regularized methods have been proposed based on the
framework of LRMF/low-rank tensor factorization (LRTF)
[54]–[56]. Specifically, an HSI X ∈ R

n1×n2×n3 can be fac-
torized as X = B ×3 A, where A ∈ R

n3×r and B ∈
R

n1×n2×r (r � n3) denote the spectral factor and the spatial
factor, respectively. The existing methods usually regarded
each frontal slice of the spatial factor B as a gray-scale image
and, subsequently, used various regularization to explore its
prior. Examples include the TV/framelet-regularization used
to explore the spatial local continuity [54], [55] and the
nonlocal low-rank regularization used to exploit the spatial
nonlocal self-similarity [56]. However, there are still exist two
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issues. On the one hand, these methods cannot fully explore
the common characteristics, except the global low rankness,
of different bands. For example, most of the smooth areas in
different bands of an HSI usually located at the same location
since different bands present the same scene. This common
characteristic causes the spatial difference images (SpatDIs)
of the HSIs, as shown in Fig. 1(b) and (c), to be group sparse
along the spectral mode.1 On the other hand, these methods
neglect the local continuity along the spectral mode of HSIs.

In this article, we propose a double-factor-regularized LRTF
(LRTF-DFR) method for HSI mixed noise removal, which
not only employs the LRTF framework X = B ×3 A to
characterize the spectral global low rankness of HSIs but also
utilizes the regularization terms on the spatial factor B and the
spectral factor A to depict the aforementioned group sparsity
and spectral continuity, respectively. The contributions of this
article are mainly the following three aspects.

First, a direct way to explore aforementioned group sparsity
is to utilize the �2,1-norm on the SpatDIs of HSIs, i.e., �X ×k

Dk�2,1 (k = 1, 2) shown in Fig. 1(d). Instead of this direct way,
this article unitizes the �2,1-norm on the SpatDIs of the spatial
factor B, i.e., �B×k Dk�2,1 shown in Fig. 1(e), and proves that
X ×k Dk must be group sparse along the spectral mode when
B ×k Dk is group sparse along the third mode. Meanwhile,
a weighted strategy is employed to better promote the group
sparsity.

Second, we note that each spectral vector (tube) of an HSI
X can be mathematically expressed as the linear combination
of all column of the spectral factor A, i.e., columns of A
can be regarded as a basis of the spectral space of X . Since
continuous bases tend to generate continuous data, this article
promotes the continuity of spectral vectors of X by boosting
the continuity of columns of A.

Third, an efficient proximal alternating minimization [57]
(PAM)-based algorithm is developed to solve the proposed
LRTF-DFR method. Extensive experiments conducted on sim-
ulated and real HSIs exhibit the superior performance of the
proposed LRTF-DFR on mixed noise removal, spatial image
recovery, and spectral signatures preserving compared with
several excellent methods.

The rest of this article is organized as follows. Section II
gives some notations and preliminary knowledge. Section III
presents the proposed LRTF-DFR-based HSI restoration
model and develops a PAM-based solving algorithm with a
detailed computational complexity analysis. Section IV carries
out extensive experiments to illustrate the superiority of the
proposed model. Section V summarizes this article.

II. NOTATIONS AND PRELIMINARIES

Following the nomenclatures of [58], we summarize nota-
tions used in this article in Table I. Next, we introduce
the definitions of mode-k unfolding, mode-k tensor-matrix
product, and the Tucker rank.

Definition 1 (Mode-k Unfolding): For an N th-order tensor
X ∈ R

n1×n2×···×nN , its mode-k unfolding X(k) is an nk ×
1The number of spectral vectors whose elements are approximately all zero

is much more than that of the nonzero ones.

TABLE I

NOTATION DECLARATIONS

�
i �=k ni matrix, which satisfies that X(k)(ik, j) is mapped

by X (i1, i2, . . . , iN ), where j =1+ �N
s=1,s �=k(is − 1)Js with

Js = �s−1
m=1,m �=k nm . The corresponding operator and inverse

operator are denoted as X(k) = Unfoldk(X ) and X =
Foldk(X(k)), respectively.

Definition 2 (Mode-k Tensor-Matrix Product): The mode-
k tensor-matrix product of an n1 ×n2 ×· · ·×nN tensor X and
a J ×nk matrix A is an n1 ×· · ·×nk−1 × J ×nk+1 ×· · ·×nN

tensor denoted by X ×k A and satisfied

(X ×k A)i1,...,ik−1, j,ik+1,...,iN =
nk�

ik=1

xi1,i2,...,iN · a j,ik .

According to abovementioned two definitions, we have

Y = X ×k A ⇔ Y(k) = AX(k)

and

Y = X ×1 A1 ×2 A2 · · · ×N AN ⇔
Y(k) = AkX(k)(AN ⊗ · · · ⊗ Ak+1 ⊗ Ak−1 ⊗ · · · ⊗ A1)

T.

Definition 3 (Tucker Rank): For an N th-order tensor X ∈
R

n1×n2×···×nN , its Tucker rank is defined as

RankT(X ) = (Rank(X(1)), Rank(X(2)), . . . , Rank(X(N))).

Interested readers can obtain a more detailed introduction
for tensors in [58].

III. PROPOSED HSI RESTORATION MODEL AND SOLVING

ALGORITHM

A. Problem Formulation and Motivation

By simply assuming that the noisy HSI Y ∈ R
n1×n2×n3 is

corrupted by the additive Gaussian noise N and the additive
sparse noise S (salt and pepper noise, deadlines, and stripes),
the HSI degradation formulation can be expressed as

Y = X + N + S.
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Fig. 2. Impact of each term in the proposed LRTF-DFR on the performance of HSI restoration. From the second to fourth rows: the results of the method
without factor-based regularization (LRTF), the method only with factor B-based regularization (LRTF-FR-B), and the proposed LRTF-DFR, respectively.
(From Left to Right) Restoration results at band 72, restoration results of the spectral vector at spatial location (150, 150), one frontal slice of the spatial
factor B, and two columns of the spectral factor A.

The key issue of recovering the clean HSI X from Y is to
exactly characterize the HSI prior by establishing appropri-
ate regularization terms. Mathematically, a generalized HSI
restoration model can be formulated as

min
X ,S

1

2
�Y − X − S�2

F + τR(X ) + μ�S�1 (1)

where τ and μ are regularization parameters; R(X ) is the
regularization term designed to exploit the HSI prior. For
example, R(X ) was designed as the tensor nuclear norm [43],
[44] and the Schatten p-norm [36] to explore low-rankness
prior, spatial–spectral TV [52] and enhanced 3-D TV [59]
to characterize spatial–spectral continuity prior, and nonlocal
low-rank regularization [51] to exploit nonlocal self-similarity
prior. However, adding regularization on HSIs will inevitably
lead to high computational complexity since HSIs usually have
a large scale.

Fortunately, the spectral low rankness of HSIs can be
represented as the mode-3 tensor-matrix product of a low-
dimensional tensor and a low-dimensional matrix, i.e., the
clean HSI X can be approximately factorized as

X = B ×3 A (2)

where B ∈ R
n1×n2×r (r � n3) denotes the spatial factor and

A ∈ R
n3×r represents the spectral factor. Since the spatial

factor B usually reflects the spatial characteristics of HSIs [33],
[34], many subspace-based and LRMF/LRTF-based methods

employed various regularization on B, and their models can
be generally formulated as

min
A,B,S

1

2
�Y − B ×3 A − S�2

F + τR(B) + μ�S�1 (3)

where A satisfies ATA = I in subspace-based methods
and R(B) is the regularization term designed to exploit its
prior. For example, R(B) was designed as the framelet-
regularization [55] and nonlocal low-rank regularization [56]
to explore the spatial local continuity and the spatial nonlocal
self-similarity, respectively. However, the existing regulariza-
tion on B cannot fully explore the common characteristics
among different bands of HSIs, such as the spectral group
sparsity in SpatDIs of HSIs. Meanwhile, the spectral continuity
of HSIs was also neglected.

B. LRTF-DFR-Based HSI Restoration Model

To consider the aforementioned spectral group sparsity and
spectral continuity in the HSI X , we introduce regularization
on factors in (2) and propose an LRTF-DFR-based HSI
restoration method as follows:

min
A,B,S

1

2
�Y − B ×3 A − S�2

F + τ

2�
k=1

�Wk � (B ×k Dk)�2,1

+λ�D3A�2
F + μ�Ws � S�1 (4)
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where τ , λ, and μ are regularization parameters; Dk (k =
1, 2, 3) are first-order difference matrices; and Wk (k = 1, 2)
and Ws are weight tensors used to better promote the group
sparsity [53] and the sparsity [60], respectively. Especially, all
frontal slices of Wk are the same matrices, denoted as Wk .
Most importantly, Remarks 1 and 2 give a detail illustration
of why the group sparsity constraint on B ×k Dk (k = 1, 2)
can promote the group sparsity in X ×k Dk and the continuity
constraint on A can promote the spectral continuity of X .

Remark 1 (Factor B-Based Regularization): With Defini-
tion 2, we have

X ×k Dk = (B ×3 A) ×k Dk = (B ×k Dk) ×3 A

⇔ [X ×k Dk](i, j, :) =
r�

t=1

[B ×k Dk](i, j, t)A(:, t).

It can be easy to obtain that [X ×k Dk](i, j, :) = 0 when
[B ×k Dk](i, j, :) = 0. Therefore, when B ×k Dk is group
sparse along the third mode, X ×k Dk must be group sparse
along the third (spectral) mode. Moreover, the abovementioned
conclusion is also true in reverse. This is because [B ×k

Dk](i, j, :) = 0 when [X ×k Dk](i, j, :) = 0 since A(:, 1),
A(:, 2), . . ., and A(:, r) are linearly independent.

Remark 2 (Factor A-Based Regularization): By rewriting
X = B ×3 A as X(3) = AB(3), it is not hard to find that each
spectral vector of X (column of X(3)) can be mathematically
expressed as a linear combination of all column of the spectral
factor A. This implies that columns of A can be regarded
as a basis of the spectral space of X . Since continuous
bases usually tend to generate continuous data, boosting the
continuity of the columns of A can promote the continuity of
the spectral vector of X compared with the case without the
continuity constraint.

We take an example shown in Fig. 2 to illustrate the impact
of the factor-based regularization terms in the proposed LRTF-
DFR on the performance of mixed noise removal. By compar-
ing the second and third rows, we find that due to the group
sparsity constraint on B ×k Dk (k = 1, 2), the frontal slice of
B obtained by LRTF-FR-B contains more geometrical features
than that obtained by LRTF, leading to a significant improve-
ment in HSI restoration. By comparing the third and fourth
rows, we find that due to the column continuity constraint on
A, the spectral vector obtained by the proposed LRTF-DFR
is much smoother and closer to the original ones than that
by LRTF-FR-B. The abovementioned observations empirically
illustrate the significance of the factor-based regularization
terms and consistent with the previous theoretical discussions.

In summary, the proposed LRTF-DFR has the following two
advantages.

1) Double-Factor-Based Regularization for HSI Prior:
Compared with the single-factor-regularized methods
[54]–[56], the proposed LRTF-DFR explores more HSI
prior knowledge in both spatial and spectral domains
since both spatial and spectral factors are fully utilized.

2) Lower Computational Complexity: Compared with the
method using regularization on the original HSI [52],
[53], the proposed LRTF-DFR has lower computational

complexity since the scales of factors are much smaller
than that of the original HSI.

C. PAM-Based Solving Algorithm

Within the framework of PAM-based algorithm, the problem
(4) can be solved by alternately updating⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Step 1 : Al+1 =argminA f (A,Bl,Sl)+ ρ

2
�A−Al�2

F

Step 2 : Bl+1 =argminB f (Al+1,B,Sl)+ ρ

2
�B−Bl�2

F

Step 3 : Sl+1 =argminS f (Al+1,Bl+1,S)+ ρ

2
�S−Sl�2

F

(5)

where f (A,B,S) is the objective function of (4) and ρ > 0
is the proximal parameter.

1) Update A: In Step 1 of (5), the A-subproblem is as
follows:

argmin
A

1

2
�Y − Bl ×3 A − Sl�2

F

+ λ�D3A�2
F + ρ

2
�A − Al�2

F (6)

whose solver can be directly obtained by solving the following
Sylvester matrix equation:

ABl
(3)

	
Bl

(3)


T + 2λDT
3 D3A + ρA

= 	
Y(3) − Sl

(3)


	
Bl

(3)


T + ρAl . (7)

To efficiently solve (7), we introduce the following theorem.
Theorem 1 (Fast Solution of Sylvester Matrix Equation):

Suppose that A ∈ R
m×m , B ∈ R

n×n, and X, Y ∈ R
m×n . The

classical Sylvester matrix equation

AX + XB = Y

has a unique solution if only if In ⊗A+BT ⊗Im is a invertible
matrix. Especially, if

A = U1�1UT
1 and B = U2�2UT

2

this unique solution can be expressed as

X = U1
	
(1 	 T) � 	

UT
1 YU2




UT

2

where �1 and �2 are diagonal matrices, U1 and U2 are unitary
matrices, and

T = (diag2(�1), diag(�1), . . . , diag(�1))

+ (diag(�2), diag(�2), . . . , diag(�2))
T.

In (7), it is not hard to find that the matrix DT
3 D3 is a circu-

lant matrix and the matrix Bl
(3)(B

l
(3))

T is a symmetric matrix.
Therefore, we utilize 1-D fast Fourier transformation (FFT)
and SVD to diagonalize DT

3 D3 and Bl
(3)(B

l
(3))

T, respectively.
That is

DT
3 D3 = FT

1 �1F1 and Bl
(3)

	
Bl

(3)


T = U1�1UT
1

where F1 is 1-D discrete Fourier transformation (DFT) matrix.
By using Theorem 1, we can efficiently solve (7) as

Al+1 = FT
1 ((1 	 T1) � (F1GU1))UT

1 (8)

2diag(�) is a column vector whose elements are diagonal elements of �.
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where G = (Y(3) − Sl
(3))(B

l
(3))

T + ρAl and

T1 = 2λ(diag(�1), diag(�1), . . . , diag(�1)) + ρones3(n3, r)

+(diag(�1), diag(�1), . . . , diag(�1))
T.

2) Update B: In Step 2 of (5), the B-subproblem is as
follows:

argmin
B

1

2
�Y − B ×3 Al+1 − Sl�2

F

+ τ

2�
k=1

�Wk � (B ×k Dk)�2,1 + ρ

2
�B − Bl�2

F . (9)

We use the alternating direction method of multipliers
(ADMM) [61] to solve (9). By introducing two auxiliary
valuables Z1 and Z2, we rewrite (9) as

argmin
B,Z1,Z2

1

2
�Y − B ×3 Al+1 − Sl�2

F

+ τ

2�
k=1

�Wk � Zk�2,1 + ρ

2
�B − Bl�2

F

s.t. B ×k Dk = Zk, k = 1, 2. (10)

The augmented Lagrangian function of (10) is

Lβ(B,Zk,Pk)

= 1

2
�Y − B ×3 Al+1 − Sl�2

F

+
2�

k=1

�
τ�Wk � Zk�2,1 + 
B ×k Dk − Zk,Pk�

+ β

2
�B ×k Dk − Zk�2

F

�
+ ρ

2
�B − Bl�2

F (11)

where Pk (k = 1, 2) are the Lagrange multipliers and β > 0 is
the penalty parameter. To solve (10), we can alternately update
B, Zk , and Pk as⎧⎪⎨

⎪⎩
Bl+1,p+1 = argminB Lβ

	B,Z p
k ,P p

k



Z p+1

k = argminZk
Lβ

	Bl+1,p+1,Zk,P p
k



P p+1

k = P p
k + β

	Bl+1,p+1 ×k Dk − Z p+1
k



.

(12)

Next, we solve Bl+1,p+1 and Z p+1
k in (12), respectively. For

Bl+1,p+1, we solve the following problem:

argmin
B

1

2
�Y − B ×3 Al+1 − Sl�2

F + ρ

2
�B − Bl�2

F

+
2�

k=1

β

2





B ×k Dk − Z p
k + P p

k

β






2

F

(13)

which can be directly solved by the following equation:

B ×3 ((Al+1)TAl+1) +
2�

k=1

βB ×k
	
DT

k Dk

 + ρB = K (14)

where

K = (Y − Sl) ×3 (Al+1)T

+
2�

k=1

β

�
Z p

k − P p
k

β

�
×k DT

k + ρBl.

3ones(m, n) is an m × n matrix whose elements are all 1.

Equation (14) can be equivalently rewritten as

BT
(3)((A

l+1)TAl+1) + ρBT
(3) + CBT

(3) = KT
(3) (15)

where C = β[(In2 ⊗ DT
1 D1) + (DT

2 D2 ⊗ In1)]. It is easy to
find that the matrix C has a structure of block circulant with
circulant blocks, and the matrix (Al+1)TAl+1 is a symmetric
matrix. Thus, we employ 2-D FFT and SVD to diagonalize C
and (Al+1)TAl+1, respectively. That is

C = FT
2 �2F2 and (Al+1)TAl+1 = U2�2UT

2

where F2 is 2-D DFT matrix. By using Theorem 1, we can
efficiently solve (14) as

Bl+1,p+1 =Fold3
	�

FT
2

	
(1 	 T2) � 	

F2KT
(3)U2




UT

2

�T

(16)

where

T2 = (diag(�2), diag(�2), . . . , diag(�2)) + ρ ones(n1n2, r)

+(diag(�2), diag(�2), . . . diag(�2)

T

.

For Z p+1
k (k = 1, 2), we solve the following problem:

argmin
Zk

τ�Wk � Zk�2,1

+β

2





Bk+1,p+1 ×k Dk − Zk + P p
k

β






2

F

(17)

which can be directly solved by

Z p+1
k (i, j, :) = shrink2,1

�
Ẑk(i, j, :), |Wk(i, j)| · τ

β

�
(18)

where

Ẑk = Bl+1,p+1 ×k Dk + P p
k

β

Wk(i, j) = 1

�Ẑk(i, j, :)�2 + ε

shrink2,1(x, ξ) =
⎧⎨
⎩

�x�2 − ξ

�x�2
x, if ξ < �x�2

0, otherwise

and ε is a small constant for avoiding the appearance of
singularities.

3) Update S: In Step 3 of (5), the S-subproblem is as
follows:

argmin
S

1

2
�Y − Bl+1 ×3 Al+1 − Sl�2

F

+ μ�Ws � S�1 + ρ

2
�S − Sl�2

F (19)

which has the following solution:

Sl+1 = shrink1

�
Ŝ,Ws � μ

1 + ρ

�
(20)

where

Ŝ = Y − Bl+1 ×3 Al+1 + ρSl

1 + ρ

Ws(i, j, m) = 1

|Ŝ(i, j, m)| + ε

and

[shrink1(X , ξ)]i, j,m = sign(xi, j,m)max(|xi, j,m| − ξ, 0).
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Algorithm 1 PAM-Based Solver for the LRTF-DFR-Based
HSI Restoration Model
Input: The degraded observation HSI Y ∈ R

n1×n2×n3 , rank r ,
parameters τ , λ, μ, β, and ρ = 0.1.

Initialization: l = 0, lmax = 50, pmax = 10, A0 =
rand(n3, r), B0 = rand(n1, n2, r), and S0 = 0.

1: while not converged and l < lmax do
2: Update Al+1 via (8).
3: Initialization: p = 0, Z0

k = 0 (k = 1, 2), and P0
k = 0.

4: while p < pmax do
5: Update Bl+1,p+1 via (16).
6: Update Z p+1

k via (18), k = 1, 2.
7: Update P p+1

k via (12), k = 1, 2.
8: Let p = p + 1.
9: Check the convergence condition:

�Bl+1,p − Bl+1,p−1�F/�Bl+1,p−1�F < 10−4.

10: end while
11: Let Bl+1 = Bl+1,p .
12: Update Sl+1 via (20).
13: Let l = l + 1.
14: Check the convergence condition:

�Bl×3 Al − Bl−1×3 Al−1�F/�Bl−1 ×3 Al−1�F <10−4.

15: end while
Output: The restored HSI X = B ×3 A.

By summarizing the aforementioned solving process,
we describe the pseudocode of the developed PAM-based
algorithm for solving the LRTF-DFR-based HSI restoration
model in Algorithm 1.

D. Computational Complexity Analysis

We analyze the computational complexity of the devel-
oped PAM-based solving algorithm on a degraded HSI Y ∈
R

n1×n2×n3 . As shown in Algorithm 1, the computational cost
at each outer iteration mainly lies in the updating of A,
B, Zk , Pk , S, and the number of inner iterations p, where
k = 1, 2. First, updating A via (8) involves SVD, 1-D FFT, and
several matrix multiplications, which leads to O	

rn1n2n3 +
r2n3 + rn3log(n3)



cost. Second, updating B via (16) needs

O	
(r + n1 + n2)n1n2n3 + r2n3 + rn1n2log(n1n2)



cost

since it involves SVD, 2-D FFT, and several tensor-matrix
product operations. Third, the computational cost of updating
Zk (k = 1, 2) via (18) is O(n1n2n3). Fourth, the compu-
tational cost of updating Pk via (12) is O(n2

1n2r). Finally,
the computational cost of updating S via (20) is O(n1n2n3).
In summary, the computational cost at each outer iteration
of the developed PAM-based algorithm is O	

rn3log(n3) +
p
	
(r + n1 + n2)n1n2n3 + rn1n2log(n1n2)




.

IV. NUMERICAL EXPERIMENTS

We test the performance of the proposed LRTF-DFR-based
HSI restoration method4 by conducting extensive experiments

4The code of the proposed LRTF-DFR-based HSI restoration method is
available at https://github.com/YuBangZheng/code_LRTFDFR.

on both simulated and real HSIs. To comprehensively eval-
uate the proposed method, we compare five excellent HSI
restoration methods, i.e., LRMR [35], NMoG [39], SNLRSF
[56], LRTDTV [52], and LRTDGS [53]. We select LRMR
and NMoG since they represent the classic methods based on
matrix rank minimization and noise modeling, respectively.
We select SNLRSF, LRTDTV, and LRTDGS since they are
the most relevant to the proposed method among the newer
methods for mixed noise removal. The detailed relations and
distinctions between the proposed method and the compared
methods are summarized in Table II.

All parameters involved in the compared methods are
carefully adjusted based on the authors’ suggestions in their
articles to obtain the optimal performance. The gray values of
HSIs are normalized into the interval [0, 1] band-by-band. All
experiments are implemented by using MATLAB (R2019a) on
Windows 10 with an Intel Core i9-9900K 3.60-GHz processor
and 32-GB RAM.

A. Simulated Data Experiments

We employ two public HSIs in this section: one is the
simulated Indian Pines data set5 with the size of (145, 145,
224), which is also used in the compared methods LRTDTV
and LRTDGS; the other is the Washington DC Mall data
set6 with the size of (256,256,191), which is also used in the
compared methods LRMR, NMoG, SNLRSF, and LRTDGS.
Three quantitative evaluation indexes, including the mean of
peak signal-to-noise rate (MPSNR) over all bands, the mean of
structural similarity (MSSIM) over all bands, and the mean of
spectral angle mapping (MSAM) over all spectral vectors, are
selected to evaluate the overall quality of the restored results
quantitatively. Since the noise in HSIs usually manifests as
a mixture of several kinds of noise in real noise scenarios,
we consider the following five cases.

Case 1 (Gaussian Noise): The Gaussian noise with zero
mean is added to all bands, and the noise standard deviation
in each band is randomly sampled from the interval [0.1, 0.2].

Case 2 (Gaussian Noise + Salt and Pepper Noise): The
Gaussian noise is added in the same way as Case 1. Further-
more, the salt and pepper noise is added to all bands, and the
noise proportion in each band is randomly sampled from the
interval [0.1, 0.2].

Case 3 (Gaussian Noise + Salt and Pepper Noise + Stripe):
The Gaussian noise and the salt and pepper noise are added
in the same way as Case 2. Furthermore, 40% of all bands are
randomly selected to add stripes, and the number of stripes
in each selected band is randomly sampled from the set [6,
7, . . ., 15]. Especially, all elements of the whole column will
become a certain value randomly sampled from the interval
[0.6,0.8] if this column is selected to add the stripe.

Case 4 (Gaussian Noise + Salt and Pepper Noise +
Deadline): The Gaussian noise and the salt and pepper noise
are added in the same way as Case 2. Furthermore, 20% of all
bands are randomly selected to add deadlines with the width
of randomly sampled from the set [1, 2, 3], and the number

5This data set is generated in the same way as [49].
6http://lesun.weebly.com/hyperspectral-data-set.html
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TABLE II

DETAILED RELATIONS AND DISTINCTIONS BETWEEN THE PROPOSED METHOD AND THE COMPARED METHODS

TABLE III

QUANTITATIVE COMPARISON OF ALL COMPARED METHODS FOR DIFFERENT DATA SETS AND CASES

of deadlines in each selected band is randomly sampled from
the set [6, 7, . . . , 10]. Especially, all elements of the whole
column will become zero if this column is selected to add the
deadline.

Case 5 (Gaussian Noise + Salt and Pepper Noise + Stripe
+ Deadline): The Gaussian noise and the salt and pepper noise

are added in the same way as Case 2. Furthermore, stripes
and deadlines are added in the same way as Cases 3 and 4,
respectively.

1) Quantitative Comparison: We report the MPSNR,
MSSIM, MSAM, and the mean time values obtained by
all compared methods in Table III. Especially, we highlight
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Fig. 3. PSNR values of all bands obtained by different compared methods under different cases. (From Left to Right) Results of cases 1–5, respectively.
The first and the second rows are the results on HSIs Indian Pines and Washington DC Mall, respectively.

Fig. 4. Restoration results at band 48 of the Indian Pines data set. (From Top to Bottom) Results under cases 1–5, respectively. (From Left to Right) Original
image, the noisy image, the results of LRMR, NMoG, SNLRSF, LRTDTV, LRTDGS, and LRTF-DFR, respectively.

the best results by bold. As observed, the proposed LRTF-
DFR achieves overall superior results over the compared ones
under nearly all cases. Although under case 1, SNLRSF
outputs slightly higher MPSNR and MSSIM values than
the proposed method on the Washington DC Mall data set,
it obviously underperforms than the proposed method under
other cases. For the running time, the proposed method costs

a shorter time than LRTDTV and LRTDGS. The main reason
is that the proposed LRTF-DFR characterizes the HSI priors
by introducing constraints on factors, while LRTDTV and
LRTDGS by directly adding constraints on the original HSI.
Meanwhile, the proposed method also costs a shorter time than
NMoG with the reason that NMoG spends much time in noise
learning. To compare the performance of each band, Fig. 3
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Fig. 5. Restoration results at band 86 of the Washington DC Mall data set. (From Top to Bottom) Results under cases 1–5, respectively. (From Left to Right)
Original image, the noisy image, the results of LRMR, NMoG, SNLRSF, LRTDTV, LRTDGS, and LRTF-DFR, respectively.

shows the PSNR values of each band obtained by six compared
methods. As observed, the proposed LRTF-DFR achieves the
highest PSNR values among all the compared methods in most
bands and cases.

2) Qualitative Comparison: To visually compare the restora-
tion results, Fig. 4 shows band 48 of the Indian Pines
data set restored by six compared methods under all cases.
We observe from Fig. 4 that the proposed LRTF-DFR obtains
the best visual results among all compared methods both in
noise removal and the recovery of global structure and local
details. Here LRMR, NMoG, and SNLRSF are not able to
fully remove the noises, and LRTDTV and LRTDGS are not
capable of well recovering the local details, especially the
edges. Especially for case 5, the results of LRMR, SNLRSF,
LRTDTV, and LRTDGS contain larger amounts of the trace
of the thick deadlines. Comparatively, the proposed LRTF-
DFR completely removes all noises while finely preserving
the global structure and local details of the target HSI. Fig. 5
shows band 86 of the Washington DC Mall data set restored by
six compared methods under all cases. It can be seen that the
results of the proposed LRTF-DFR have an obvious improve-
ment in noise removal and details preserving compared with
the other methods.

To further compare the performance of the spectral curve
recovery, cases 2 and 5 are selected as two representative
cases. Fig. 6 shows the spectral curves at one spatial location
of the restoration results by different compared methods under

cases 2 and 5. It is observed that the spectral curves obtained
by the proposed LRTF-DFR can better approximate the orig-
inal ones than those produced by the compared methods.
In summary, the abovementioned observations illustrate that
the proposed LRTF-DFR has the best performance on mixed
noise removal, spatial image recovery, and spectral signatures
preserving, among all compared methods.

The reason why the proposed LRTF-DFR is superior to the
compared ones is that it can fully utilize the relevant informa-
tion among different bands. More specifically, the proposed
LRTF-DFR not only utilizes the global low rankness and the
local continuity but also assumes that most of the smooth
areas in different bands located at the same location, i.e., the
SpatDIs of HSIs are group sparse along the spectral mode.
This assumption makes the proposed LRTF-DFR to fully
exploit the common characteristics among different bands.
By contrast, LRMR, NMoG, and SNLRSF fail to consider
the local continuity, LRTDTV does not consider the spectral
group sparsity in the SpatDIs, and LRTDGS does not consider
the local continuity in the spectral domain.

B. Real Data Experiments

This section employs two real-world HSIs: one is the Urban
data set6 with a size of (307, 307, 210), which is also used in
all compared methods; the other is the real Indian Pines data
set6 with a size of (145, 145, 220), which is also used in the
compared methods SNLRSF, LRTDTV, and LRTDGS.
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Fig. 6. Spectral curves of the restoration results by different compared methods. (From Left to Right) Results of LRMR, NMoG, SNLRSF, LRTDTV,
LRTDGS, and LRTF-DFR, respectively. The first two rows are the results at spatial location (30, 30) of the Indian Pines data set under cases 2 and 5,
respectively. The last two rows are the results at spatial location (151, 151) of the Washington DC Mall data set under cases 2 and 5, respectively.

Fig. 7. Restoration results at band 109 of the real HSI Urban. (From Left to Right) Noisy/original result, the results of LRMR, NMoG, SNLRSF, LRTDTV,
LRTDGS, and LRTF-DFR, respectively. The first and the second rows are the visual results and the vertical mean profiles, respectively.

1) Urban Data Set: Fig. 7 shows the restoration results
at band 109 of the real HSI Urban, including the visual
effects and the vertical mean profiles. Here, the vertical mean
profile is a curve obtained by calculating the mean value of
pixels in each column. As observed, all compared methods
can effectively remove the mixed noise except LRMR, which
cannot completely remove the stripes. However, by observing
the enlarged box in Fig. 7, we can see that the results of
LRTDTV and LRTDGS lose some local details. NMoG and
SNLRSF have excellent ability to preserve the image details,
whereas their vertical mean profiles deviate from the basic
trend of the observed ones, implying the change of image
contrast. Comparatively, the proposed LRTF-DFR completely

removes all noises, precisely preserves the global structure and
local details, and finely retains the image contrast.

2) Indian Pines Data Set: Fig. 8 shows the restoration
results at band 220 of the real HSI Indian Pines, includ-
ing the visual effects and the vertical mean profiles. It is
obvious that the result of LRMR contains a little noise;
the reason is that LRMR only considers the low-rankness
prior. NMoG, SNLRSF, LRTDTV, LRTDGS, and the proposed
LRTF-DFR all have excellent ability to eliminate the noise
and can produce relatively smooth vertical mean profiles.
However, the proposed LRTF-DFR offers major advantages
over the other ones for recovering local details, especially
the edges.
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Fig. 8. Restoration results at band 220 of the real HSI Indian Pines. (From Left to Right) Noisy/original result, the results of LRMR, NMoG, SNLRSF,
LRTDTV, LRTDGS, and LRTF-DFR, respectively. The first and the second rows are the visual results and the vertical mean profiles, respectively.

TABLE IV

INFLUENCE OF THE NUMBER OF INNER ITERATION UNDER CASE 5 IN SIMULATED DATA EXPERIMENTS

Fig. 9. Sensitivity analysis of the rank r under cases 1 and 5.

Fig. 10. Sensitivity analysis of the parameters τ and λ under cases 1 and 5.

C. Discussion
1) Inner Iteration Analysis: We test the influence of the

number of inner iteration p on the simulated data sets under
case 5. Table IV reports the MPSNR and CPU time values

Fig. 11. Sensitivity analysis of the parameter μ under cases 1 and 5.

Fig. 12. Sensitivity analysis of the parameter β under cases 1 and 5.

with respect to different p’s. It is seen that the proposed LRTF-
DFR obtains a stable and superior performance when p ≥ 10.
Considering that the CPU time is increased with increasing of
p, we set p to be 10 in all experiments.

2) Parameter Analysis: We test the sensitivity of the para-
meters on the simulated data sets under cases 1 and 5 since
they represent the Gaussian noise case and mixed noise case,
respectively. As shown in Algorithm 1, the proposed LRTF-
DFR method involves five important parameters: the rank
r , regularization parameters τ , λ, and μ, and the penalty
parameter β.
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TABLE V

PARAMETERS SETTING OF THE PROPOSED LRTF-DFR IN
SIMULATED DATA EXPERIMENTS

TABLE VI

PARAMETERS SETTING OF THE PROPOSED LRTF-DFR IN

REAL DATA EXPERIMENTS

The rank r mainly characterizes the spectral global correla-
tion of HSIs. The sensitivity analysis of the rank r is presented
in Fig. 9. It is seen that the proposed LRTF-DFR exhibits
stable and superior performance within a certain range of the
rank r . Considering that larger r leads to higher computational
complexity, we set r to be 12 and 8 for the simulated Indian
Pines data set and Washington DC Mall data set, respectively.
Especially, the rank r is estimated by the well-known HySime
algorithm [62] in real data experiments.

The parameters τ and λ determine the weights of the factor
B-based and the factor A-based regularization terms, respec-
tively. Fig. 10 shows their sensitivity analysis. As observed,
the performance of the proposed LRTF-DFR is robust to
the parameter λ, while it is sensitive to the parameter τ ,
especially in the Washington DC Mall data set. Moreover,
as the parameters τ and λ change, the MPSNR values have
the same changing tendency for different noisy cases. This
implies that these two parameters are robust to different noisy
cases.

The parameter μ determines the weight of the sparse noise
term. Fig. 11 shows the sensitivity analysis of μ. It is seen that
the proposed LRTF-DFR has stable and superior performance
under case 1 when μ is larger than 0.04. This is because case 1
only involves the Gaussian noise. For case 5, the performance
of LRTF-DFR is slightly sensitive to μ, and the higher
MPSNR values are achieved at μ = 0.03, 0.04, and 0.05.

The sensitivity analysis of the penalty parameter β is shown
in Fig. 12. It is obvious that the performance of the proposed
LRTF-DFR is robust within a certain range of β.

Under the guidance of the abovementioned analysis,
Tables V and VI list the parameters setting of the proposed
method in simulated data experiments and real data experi-
ments, respectively.

3) Convergence Analysis: Since the ADMM and weighted
strategies are embedded into the PAM framework, it is still
an open problem for theoretically proving the convergence
of the developed algorithm [57], [63]. Instead, we numeri-
cally demonstrate the convergence. Fig. 13 shows the relative
change in the restored HSIs in each iteration and its previous
iteration under cases 1 and 5. It is observed that for all testing
data sets, the values of the relative change achieved by the
developed algorithm monotonically decrease and gradually

Fig. 13. Relative change curves with respect to the iteration number under
cases 1 and 5.

tend to zeros, as the number of iterations increases. This
justifies the strong convergence of the developed PAM-based
solving algorithm numerically.

V. CONCLUSION

In this article, we proposed an LRTF-DFR model for HSI
mixed noise removal, which employed the LRTF framework
to characterize the spectral global low rankness of HSIs, intro-
duced a group sparsity constraint on the SpatDIs of the spatial
factor to promote the group sparsity in the SpatDIs of HSIs,
and suggested a continuity constraint on the spectral factor
to promote the spectral continuity of HSIs. Especially, two
weighted strategies are employed to better promote group spar-
sity and sparsity, respectively. To solve the proposed LRTF-
DFR model, a PAM-based algorithm was developed with
a numerically guaranteed convergence. By comparing with
several excellent methods, including LRMR [35], NMoG [39],
SNLRSF [56], LRTDTV [52], and LRTDGS [53], in extensive
numerical experiments, the proposed method exhibited its
superior performance on mixed noise removal, spatial image
recovery, and spectral signatures preserving.

In the future, we will attempt to combine the proposed
LRTF-DFR with the convolutional neural network [45], [64]–
[66] to learn a more appropriate regularization on factors and
further improve the ability of mixed noise removal.
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