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Abstract— Hyperspectral image (HSI) mixed noise removal is
a fundamental problem and an important preprocessing step
in remote sensing fields. The low-rank approximation-based
methods have been verified effective to encode the global spectral
correlation for HSI denoising. However, due to the large scale
and complexity of real HSI, previous low-rank HSI denoising
techniques encounter several problems, including coarse rank
approximation (such as nuclear norm), the high computational
cost of singular value decomposition (SVD) (such as Schatten
p-norm), and adaptive rank selection (such as low-rank factoriza-
tion). In this article, two novel factor group sparsity-regularized
nonconvex low-rank approximation (FGSLR) methods are intro-
duced for HSI denoising, which can simultaneously overcome the
mentioned issues of previous works. The FGSLR methods capture
the spectral correlation via low-rank factorization, meanwhile
utilizing factor group sparsity regularization to further enhance
the low-rank property. It is SVD-free and robust to rank selection.
Moreover, FGSLR is equivalent to Schatten p-norm approxima-
tion (Theorem 1), and thus FGSLR is tighter than the nuclear
norm in terms of rank approximation. To preserve the spatial
information of HSI in the denoising process, the total variation
regularization is also incorporated into the proposed FGSLR
models. Specifically, the proximal alternating minimization is
designed to solve the proposed FGSLR models. Experimental
results have demonstrated that the proposed FGSLR methods
significantly outperform existing low-rank approximation-based
HSI denoising methods.

Index Terms— Factor group sparsity regularization, hyperspec-
tral image (HSI) denoising, nonconvex low-rank approximation,
proximal alternating minimization (PAM).
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I. INTRODUCTION

HYPERSPECTRAL image (HSI), a high dimension
dataset of the same scene collected by a few hundreds of

narrow wavelengths, contains more plenty of spectral informa-
tion and is widely applied in remote sensing applications, such
as environment monitoring and mineral exploration [1]. Due to
the fundamental limitations of hyperpsectral imaging sensors,
such as photon effects, stochastic error of photocounting,
and calibration error [2], the process of HSI imaging is
accompanied by different types of noise pollution, mainly
including Gaussian, impulse, dead lines, stripes noises. The
existence of hybrid noises extremely deteriorates the perfor-
mance of further applications, e.g., super-resolution [3] and
classification [4]. Since the high cost of hardware-based noise
suppression solutions, it is reasonable to develop an effective
HSI denoising approach as a preprocessing step to help the
subsequent applications.

During the past decades, many different techniques have
been developed for HSI denoising. A straightforward idea is to
simply extend the 1-D signal or 2-D image processing methods
for HSI pixel-by-pixel [5] or band-by-band [6] denoising.
However, these methods cannot excavate the high spectral
correlation across all bands, which is inadequate to obtain
satisfactory results. To overcome the deficiencies, a variety
of improved approaches have been developed by considering
the correlation in the HSI dataset. For example, Othman
and Qian [7] developed a wavelet shrinkage method in the
derivative-domain for HSI denoising; Chen and Qian [8]
proposed denoising method by combining the wavelet shrink-
age with principal component analysis, and a traditional
total variation (TV) regularization in the spatial-spectral
dimension was proposed for HSI denoising [9]. Addition-
ally, the framework of sparse representation was used to
exploit the spatial-spectral correlation for HSI denoising [10].
In recent years, the subspace-based methods [11] were
widely used to effectively describe the spectral correlation
and achieved better results for HSI denoising, including
fast hyperspectral denoising [12] and nonlocal meets global
method [13].

In particular, the aforementioned methods are mainly
employed to handle one or two types of noise, which are
potentially restricted for real noisy HSI. There are vari-
ous kinds of noise in HSI during the imaging process,
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such as Gaussian, impulse, dead lines, and stripes noises.
More recently, motivated by the effectiveness of deep
convolutional neural networks (DCNNs) for strong spatial fea-
ture extraction and expression ability [14]–[16], DCNN-based
methods were developed for HSI denoising [17]–[19]. Unfor-
tunately, DCNN is hard to predict the spectral correlation.
However, the huge spectral correlation has been proven effec-
tive to boost the denoising results [13]. As we know, the spec-
tral correlation can be explored by rank minimization, thus
low-rank approximation methods for HSI denoising are still
the mainstream.

The robust principal component analysis (RPCA) technique
was first introduced in [20] for HSI mixed noise removal.
The underlying idea of RPCA is based on these two facts
that the high spectral correlation of HSI can be captured by
low-rank prior, meanwhile impulse, dead lines, and stripes
noises possess the sparse characteristic. Under the framework
of RPCA, Zhang et al. [20] first developed a low-rank matrix
recovery (LRMR) approach for HSI mixed noise removal.
However, the RPCA model cannot preserve the spatial infor-
mation in HSI, leading to suboptimal denoising results for
heavy noisy scenes. Thereupon, He et al. [21] incorporated
band-by-band TV regularization into the RPCA framework
to preserve the spatial piecewise smoothness and boost the
denoising results. To improve the performance of band-
by-band TV regularization, spatial-spectral TV (SSTV) and
nonlocal self-similarity regularizations were widely introduced
to the RPCA framework for HSI denoising [12], [22], [23].
The RPCA-based methods mainly devote to the selection
of rank minimization, which is, in general, an NP-hard
problem.

In order to break the computational hurdle brought by
the rank minimization, most of the researchers devoted to
replacing the rank minimization with a tractable surrogate.
One of the most important alternatives is the nuclear norm,
which is a convex surrogate of rank minimization and has
been adopted in HSI denoising, such as LRMR [20], and
TV regularized low-rank matrix factorization [21]. To improve
the performance of nuclear norm, the weighted nuclear norm
was proposed in [22] for HSI denoising. Another type of rank
surrogate in HSI denoising is the nonconvex rank approxima-
tion function, which can adaptively shrink the singular values
of low-rank objects. One popular nonconvex rank approxima-
tion function for HSI denoising is the Schatten p-norm with
(0 < p < 1) [24], [25]. Besides this, there are many other non-
convex rank approximation functions applied for HSI denois-
ing, including nonconvex γ -norm approximation [26], and
nonconvex normalized �-penalty [27]. Although the above-
mentioned rank surrogate approximations have been shown
to be effective in the literature, yet all of them need to
perform singular value decomposition (SVD) in each iteration,
which causes the high cost of HSI denoising. In order to
overcome this challenge, the idea of low-rank factorization
was employed in the literature [28]–[33] to capture the high
correlation of HSI. Benefit from the low-rank factorization,
the computational efficiency is significantly improved. Due to
the intrinsic tensor form of HSI, such low-rank matrix factor-
ization methods were extensively extended to the tensor case

for HSI denoising, including t-SVD [34]–[36] Tucker decom-
position [37]–[41], CANDECOMP/PARAFAC(CP) decompo-
sition [42], and tensor ring decomposition [43]. However,
the performance of these methods based on the idea of
low-rank factorization in general heavily depends on the
choice of rank, which is usually hard to determine in practice.

In summary, the existing low-rank approximations
employed to preserve the globe spatial-spectral correlation
are either not a tight rank approximation [20], [21], or comp-
utational cost [22], [24], or sensitive to rank selection [31],
[38], [44]. In this article, we introduce a factor group sparsity-
regularized nonconvex low-rank approximation (FGSLR)
method for HSI denoising. The advantages of the proposed
FGSLR methods can be summarized as follows. First, FGSLR
approximates rank minimization on the basis of low-rank
factorization, thus the optimization is of low computation
cost. Second, the rank minimization of FGSLR is transformed
to minimize the number of nonzero columns of factor, which
can overcome the sensibility of the rank selection of previous
low-rank factorization. Third, FGSLR is equivalent to the
Schatten p-norm, thus it is a tighter rank approximation.
Moreover, we incorporate the TV regularization into the factor
to preserve the spatial information of HSI. The contributions
of this article are summarized as follows.

1) A novel nonconvex low-rank approximation that uses
factor group sparsity regularization is introduced for
HSI denoising. This method could more effectively
to exploit the low-rank characteristic of HSI and can
integrate the superiorities and avoid the deficiencies of
Schatten p-norm and low-rank factorization.

2) An efficient optimization framework proximal alter-
nating minimization (PAM) is designed to minimize
the nonconvex FGSLR models. Extensive experimental
results with both the simulated and real-world datasets
illustrate that the proposed FGSLR methods outperform
the state-of-the-art low-rank methods for HSI denois-
ing in terms of comparison of quantitative and visual
performance.

The rest of this article is organized as follows. Section II
briefly introduces some notations and related low-rank approx-
imations for HSI denoising. The proposed FGSLR methods
and the corresponding PAM optimization are presented in
Section III. Section IV reports the performance of both
simulated and real experiments and model analysis. Finally,
we conclude this article in Section V.

II. NOTATIONS AND RELATED WORKS

A. Notations

The notations are mainly defined from [45] in this arti-
cle. Scalars, vectors, and matrices are denoted as lowercase
or uppercase letters (i , I ∈ R), boldface lowercase letter
(b ∈ R

I ), and Boldface capital letters (B ∈ R
I1×I2 ), respec-

tively. An n-D high-dimensional data tensor is represented as
calligraphic letter B ∈ R

I1×I2×···×In , in which bi1,i2,...,in is its
element in location (i1, i2, . . . , in). Since HSI is a 3-D tensor
data, we mainly give the notation for 3-D tensor. The tube, row,
and column fibers are vector defined as xi1,i2,:, xi1,:,i3 and x:,i2,i3
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TABLE I

TENSOR OPERATIONS

in 3-D tensor X ∈ R
I1×I2×I3 , respectively. Moreover,

3-D tensor X contains frontal, lateral, and horizontal slices
denoted X:,:,i3 , X:,i2,:, and Xi1,:,:, respectively. For the opera-
tions of tensor involved in this article, we summarize them
in Table I.

B. Problem Formulation

Given a noisy HSI Y ∈ R
M×N×B , which is contaminated by

various mixed noise, including Gaussian noise, impulse noise,
stripes, and dead lines, where M and N are spatial sizes, and
B is spectral number, HSI denoising is to restore the clean
image X from the degraded Y , and the degraded process can
be regarded as an additive model

Y = X + S + N (1)

where X , S, and N are with the same size as Y and denote
clean HSI, a mixture of impulse noise, stripes, and dead lines,
and Gaussian noise, respectively.

Apparently, it is an ill-posed problem that directly estimat-
ing the clean HSI X from degraded model (1). To robustly
restore the clean HSI, the maximum a posteriori (MAP) can
be applied to obtain a regularization model used to address
the ill-posed problem. Then, the HSI denoising model can be
formulated as

min
X ,S

β

2
�Y − X − S�2

F + R1(X ) + τ R2(S) (2)

where the first term is data fidelity term, and the last two terms
are regularization terms specifying the prior information for
variables X and S to be estimated. β, τ ≥ 0 are positive
regularization parameters employed to balance their functions
on the restored results. As the mixture of impulse noise,
stripes and dead lines only corrupt a few parts or bands
in HSI, they are regarded as sparse noise [20]. That is to
say, the sparse regularization term [46], [47] of R2(S) can be
consistently designed as R2(S) = �S�1, which is employed
to isolate the sparse noise from the clean image. In the
following, we should investigate the prior information and
design effective regularization term for clean HSI X .

C. Low-Rank Approximation for HSI Denoising

As we know, a linear combination of a small number of pure
spectral endmembers can be used to approximately represent

each spectral signature for HSI, which indicates the high
correlation among different spatial pixels across the spectral
dimension [48]. Low-rank regularization is a strong tool for
depicting the high correlation characteristic, thus the regular-
ization term of R1(X ) can be depicted as R1(X ) = rank(X(3)),
where rank(·) is the number of nonzero singular values.
Due to the NP-hard problem of rank minimization, most
works are motivated to develop different kinds of low-rank
regularization [12], [20], [24], [38]. Below we review existed
low-rank approximations that are employed to HSI denoising.

1) Nuclear Norm: Nuclear norm is a popular convex sur-
rogate function for rank approximation, and it is widely
applied to describe the high spectral correlation for HSI
denoising [20], [21]. The nuclear norm is formulated as the
sum of singular values of X(3)

�X(3)�∗ =
min(M N,B)�

i=1

σi (X(3))

where σi (X(3)) is the i th singular value of X(3). The main
advantage of nuclear norm is that it is a convex function, but
the rank cannot be well approximated in practice since all sin-
gular values are treated equally and concurrently minimized.

To improve the performance of nuclear norm and address
the drawback, the weighted nuclear norm was proposed to
approximate rank and applied to HSI denoising [22], [49],
which is formulated as �X(3)�ω,∗ = �min(M N,B)

i=1 ωiσi (X(3)),
where the weight ωi = 1/(σi (X(3)) + �), in which � is a small
number employed to avoid singularities. Different weights
setting to the singular values can improve the flexibility of
nuclear norm minimization for rank approximation.

2) Schatten p-Norm: The another general class of rank
approximation is the Schatten p-norm (0 ≤ p ≤ 1) [50],
which is formulated as

�X(3)�Sp =
�

min(M N,B)�
i=1

σ
p

i (X(3))

�1/p

.

In the boundary cases, the Schatten p-norm is degraded to
the nuclear norm and rank function when p = 1 and p = 0,
respectively. For 0 < p < 1, Schatten p-norm is a nonconvex
surrogate approximation for rank function. Therefore, Schatten
p-norm is the a rank approximation between the rank mini-
mization and nuclear norm with 0 < p < 1. Based on the
better approximation for rank minimization, Xie et al. [24]
employed weighted Schatten p-norm to describe the low-rank
prior on spectral dimension for HSI denoising.

3) Low-Rank Factorization: Both nuclear norm and Schat-
ten p-norm need to perform SVD in each iteration, which
results in plenty of computation cost. To apply the SVD-free
rank surrogate, low-rank factorization strategy can be used
to describe the rank minimization, due to the fact that any
low-rank matrix can be factorized into the product of two
low-dimension matrices, i.e., X(3) = AB, where A ∈ R

B×r ,
B ∈ R

r×M N , and r � min{B, M N}. Since the strong low-rank
prior occurs in the third (spectral) dimension, then we can
rewrite the matrix factorization as tensor form as follows:

X = B ×3 A
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where B ∈ R
M×N×r is obtained by reshaping each row of B as

an image. From the HSI unmixing perspective, A is endmem-
ber matrix, and B denotes relative endmember abundances.
This class of low-rank surrogate can achieve satisfactory
HSI denoising by choosing appropriate rank r . Due to the
high-efficiency and effectiveness the low-rank factorization
has been widely studied for HSI denoising [13], [23], [33],
[51]. On the basis of low-rank matrix factorization, various
low-rank tensor decompositions, including low-rank Tucker
decomposition [38], [39], low-rank CP decomposition [42],
t-SVD [52], [53], and low-rank tensor ring decomposition [43],
[54], are extensively used for HSI restoration.

Besides the above classes of rank approximations, there
are other nonconvex rank approximation functions for HSI
denoising, such as nonconvex γ -norm approximation [26],
nonconvex normalized �-penalty [27]. Although Schatten
p-norm and low-rank factorization were commonly applied
to HSI denoising and achieved satisfactory results, they are
subject to certain deficiencies and cannot combine all advan-
tages of these low-rank approximations. First, using a popular
algorithm solver to optimize Schatten p-norm and nuclear
norm-based methods need to perform SVD in each iteration,
which brings high computational cost because the scale of
real HSI data is too large. Second, performing low-rank
factorization with SVD-free for rank approximation needs
to preestimate the rank r , and the final results are greatly
dependent on r . Intuitively, our objective is to find a low-rank
approximation that can derive the advantages of Schatten
p-norm and low-rank factorization and remedy their deficien-
cies for HSI denoising.

III. PROPOSED FGSLR METHODS

In this section, on the basis of low-rank factoriza-
tion, we propose a new low-rank approximation model for
HSI denoising, formulated as

min
A,B,S

β

2
�Y − B ×3 A − S�2

F + (�A�2,0 + γ �B�2,0) + τ�S�1

where �A�2,0 and �B�2,0 are the number of nonzero columns
of A and nonzero frontal slices of B, respectively, γ is the
parameter to tradeoff the contribution balance between �A�2,0

and �B�2,0. Since the � · �2,0 norm minimization is a NP-hard
and unstable problem, we can relax the � · �2,0 by its convex
� · �2,1 counterpart, that is,

min
A,B,S

β

2
�Y − B ×3 A − S�2

F + (�A�2,1 + γ �B�2,1)+τ�S�1.

(3)

Compared to the previous SVD-based low-rank approxima-
tions model, we adopt X = B ×3 A to explore the spectral
correlation prior of HSI, and further introduce a novel factor
group sparsity regularization to enhance the robustness of
rank selection of low-rank factorization. The new approx-
imation in model (3) is named FGSLR. In the following
section, we will analyze the advantage of our FGSLR in
detail.

A. Advantage Analysis of FGSLR

For the SVD-free low-rank factorization X = B ×3 A,
the rank of X(3) is strictly controlled by the number of columns
of A or the spectral dimension of B, thus r should be precisely
selected. However, in the real HSI, the precise rank is hard to
obtain. Therefore, it’s necessary to design a method that can
select the rank r adaptively under the framework of low-rank
factorization. Fortunately, we have the following fact:

rank(X(3)) := min
X=B×3A

�A�2,0 = min
X=B×3A

�B�2,0

= min
X=B×3A

1

2
(�A�2,0 + �B�2,0). (4)

Since the hard optimization of �2,0-norm, the �2,1-norm is
chosen as the convex relaxation. That is to say, the regular-
ization �A�2,1 + γ �B�2,1 can further enhance the low-rank
representation of original image X . Moreover, the proposed
FGSLR can get rid of the precise rank selection, and
achieve a more robust strategy by the factor group sparsity
regularization.

Very recently, Fan et al. [55] showed that the factor group
sparsity regularization �A�2,1 + γ �B�2,1 is equivalent to
Schatten p-norm.

Theorem 1 (Factored Factorization of the Schatten p-Norm
[55]): For any matrix Z ∈ R

m×n with rank(Z) = r ≤
min(m, n) and α > 0, there exist two factor matrices U ∈
R

m×d and V ∈ R
d×n with r ≤ d ≤ min(m, n), then the

following factored factorization of the Schatten p-norm is
satisfied:

�Z�1/2
S1/2

=
r�

i=1

σ
1/2
i (Z) = min

Z=UV

1

2

��U�2,1 + �VT�2,1
�
. (5)

If the SVD of Z denotes as Z = UZSZVT
Z , then when U =

UZS1/2
Z and V = S1/2

Z VT
Z , equality holds in (5).

Guided by Theorem 1, our factor group sparsity regular-
ization �A�2,1 + γ �B�2,1 is equivalent to �Z�1/2

S1/2
if γ = 1.

By extending (5), when the group sparsity of B is replaced
by Frobenius-norm and γ = (α/2), then it corresponds
to �Z�2/3

S2/3

�Z�2/3
S2/3

=
r�

i=1

σ
2/3
i (Z) = min

Z=UV

2

3α1/3

�
�U�2,1 + α

2
�V�2

F

	
(6)

when (6) holds, U = α1/3UZS2/3
Z and V = α−1/3S1/3

Z VT
Z . With-

out loss of generality, both low-rank approximations of (5)
and (6) are called FGSLR. From the rank approximation (4)
and Theorem 1, the advanteges of our proposed FGSLR can
be summarized as follows.

1) Tighter Rank Approximation: Compared with the nuclear
norm, FGSLR is corresponding to Schatten p-norm (0 <
p < 1), thus FGSLR can yield a tighter approximation
to the rank minimization than the nuclear norm.

2) Lower Computation Cost: The nuclear norm, Schatten
p-norm, and other nonconvex low-rank approximated
minimization problems need to implement SVD cal-
culation at every iteration in most of the optimization
algorithms. On the contrary, optimizing two FGSLR are
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SVD-free operators, and the factor regularizers can be
solved by soft-threshold shrinkage operator or small
linear equations. The computation cost of SVD is
O(mn min{m, n}), while FGSLR is O(mnd).

3) Robust to Rank Selection: Compared to the direct
low-rank factorization, we employ group sparse regu-
larization to the factors, thus some of the columns of U
and VT are rapidly forced to zero in the iterative process.
That is to say, this surrogate can automatically reduce
the number of nonzero columns and decrease the rank r
dynamically. In contrast, the surrogates of low-rank
factorization need to manually choose the number of
columns.

B. FGSLR With TV Regularization

The advantages mentioned above inspire us to employ the
FGSLR as the rank surrogate to replace other classes of
rank approximation methods (nuclear norm, Schatten p-norm,
and low-rank factorization). Consequently, we can rewrite
the model (3) and propose two HSI denoising models by
incorporating the frameworks of FGSLR (5) and (6) into
regularization model (2) as follows:

min
A,B,S

β

2
�Y − B ×3 A − S�2

F + (�A�2,1 + �B�2,1) + τ�S�1

(7)

min
A,B,S

β

2
�Y−B ×3 A − S�2

F + (�A�2,1 + α

2
�B�2

F)+τ�S�1

(8)

where A ∈ R
B×d , B ∈ R

M×N×d with r ≤ d ≤ min(m, n)
(r is the rank of X(3)).

The proposed models (7) and (8) can well capture the
low-rank characteristic of HSI, but fail to explore the prior
of spatial information. Images of the real world are piecewise
smoothness, that is, they contain similar pixels at spatial
nearby locations [21]. If A is the endmember matrix, then
each frontal slice of B is the related endmember abundance.
From another side, each frontal slice of B is the eigen-image
when A is the orthogonal basis matrix [12]. Therein, the spatial
smooth structure of HSI can be explored by regularizing B.
With the increase of iteration, the number of nonzero columns
of A dynamically reduces in the FGSLR model, then A can be
regarded as the basis matrix of X in the spectral dimension.
Therefore, B also has a similar spatial structure associated
with original HSI X . We can design the regularization term
for B to preserve the spatial information of HSI. The popular
prior for B is nonlocal self-similar [12], [13], [23], but it is
very sensitive for sparse noise. Based on the spatial piecewise
smoothness of HSI, the TV regularization [56] is introduced
to constrain B for preserving spatial information. The idea
of using smoothness constraint for factor matrices is also
employed in the framework of tensor decomposition [57], [58],
which achieves satisfactory results. In summary, incorporating
TV regularization into model (7) and (8), we propose two

novel FGSLR models for HSI denoising as follows:
min

A,B,S
β

2
�Y − B ×3 A − S�2

F + (�A�2,1 + �B�2,1)

+ β�B × D�1 + τ�S�1 (9)

min
A,B,S

β

2
�Y − B ×3 A − S�2

F +
�
�A�2,1 + α

2
�B�2

F

	
+ β�B × D�1 + τ�S�1 (10)

where β is a regularization parameter, and �B × D�1 =




�B ×1 D1

B ×2 D2

�




1

. D1 ∈ R
M×M and D2 ∈ R

N×N are first-order

difference matrices. The proposed models (9) and (10) are
named as FGSLR1/2 and FGSLR2/3, respectively.

In our FGSLR1/2 and FGSLR2/3 models, the low-rank
surrogate of spectral dimension is effectively described by
FGSLR, and the spatial structure is preserved by TV regu-
larization. To simplify the notation, FGSLR1/2 and FGSLR2/3

are collectively referred to FGSLR in some descriptions.
Relatively speaking, compared to the previous low-rank
approximation methods, the proposed FGSLR remedies many
deficiencies, including high computation cost of SVD, a con-
vex surrogate of rank approximation, and a sensitive to rank
selection. Moreover, we design the TV regularization to the
dimension-reduced factor B, which is more efficient than other
methods that directly using TV regularization to HSI itself.
It is worth noting that although previous work [39], [51] also
employed group sparsity regularization for HSI denoising,
which are very different from our work. They used group
sparsity regularization to explore the shared sparsity pattern
of the spatial difference images. In our work, we introduce
a nonconvex low-rank approximation for HSI denoising by
using factor group sparsity regularization.

C. PAM-Based Optimization Algorithm

In this section, we design an efficient algorithm to solve
the proposed FGSLR model. It is easy to see that FGSLR1/2

has one more nonsmooth term than FGSLR2/3, but they are
the same framework. Thus, we only show how to optimize
one model FGSLR1/2, and the optimization of another model
FGSLR2/3 can be derived by analogy.

Intuitively, model FGSLR1/2 is not jointly convex for both
variables A, B, S, but it is convex for each variable A, B,
S independently. To solve the model FGSLR1/2 effectively,
we introduce PAM algorithm [59], [60] to optimize it. Based
on the framework of PAM, we first introduce the proximal
operator for each variable, and then alternately optimizing
one variable while fixing others. Therefore, solving model (9)
can be transformed to alternately optimize the following three
subproblems:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ak+1 = arg min
A

f (A,Bk,Sk) + ρ

2
�A − Ak�2

F

Bk+1 = arg min
B

f (Ak+1,B,Sk) + ρ

2
�B − Bk�2

F

Sk+1 = arg min
S

f (Ak+1,Bk+1,S) + ρ

2
�S − Sk�2

F

where f (A,B,S), (ρ/2)� · �2
F , and ρ are the problem of (9),

proximal term, and positive proximal parameter, respectively.
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In the following, we solve the three subproblems according to
the next steps.

1) Step 1: We solve the block of A subproblem as follows:

Ak+1 = arg min
A

β

2



Y − Bk ×3 A − Sk


2

F
+ �A�2,1

+ ρ

2
�A − Ak�2

F . (11)

Since �2,1-norm is a nonsmooth term, we cannot directly
obtain the close-form solution of A. To solve problem (11)
efficiently, the alternating direction method of multipliers
(ADMM) [61], [62] is applied. By introducing auxiliary
valuable R, we can transform problem (11) as constrained
minimization model

Ak+1 = arg min
A

β

2



Y − Bk ×3 A − Sk


2

F
+ �R�2,1

+ ρ

2
�A − Ak�2

F , s.t. R = A. (12)

Then, the augmented Lagrangian function of (12) is

Lμ(A, R, W1) = β

2



Y − Bk ×3 A − Sk


2

F

+ �R�2,1 + ρ

2
�A − Ak�2

F + μ

2
�R − A + W1/μ�2

F (13)

where W1 and μ are Lagrange multipliers and positive penalty
parameter, respectively. Therefore, the ADMM framework
indicates that the solution of (13) can be solved by following
problem.

a) Optimizing R: The subproblem of R is solved by

Ri+1 = arg min
R

�R�2,1 + μ

2



R − Ak+1,i + Wi
1/μ


2

F
.

Let Ak+1,i − Wi
1/μ = C, then the close-form solution of

each column of Ri+1 is

Ri+1(:, n) =

⎧⎪⎨
⎪⎩

�C(:, n)�2 − 1
μ

�C(:, n)�2
C(:, n), if �C(:, n)�2 >

1

μ
0, otherwise.

(14)

b) Optimizing A: The subproblem of A is solved by

Ak+1,i+1 = arg min
A

β

2



Y − Bk ×3 A − Sk


2

F

+ ρ

2
�A − Ak�2

F + μ

2



Ri+1 − A + Wi
1/μ


2

F

and its solution is computed by

Ak+1,i+1 =
�

β
�
Y(3) − Sk

(3)

�
Bk,T

(3) + ρAk

+ μ
�
Ri+1+Wi

1/μ
���

βBk
(3)B

k,T
(3) + (ρ+μ)I

	−1
.

(15)

c) Updating W1: The update of W1 is solved by

Wi+1
1 = Wi

1 + μ
�
Ri+1 − Ak+1,i+1

�
. (16)

We summarize the whole optimized process for
A-subproblem in Algorithm 1.

Algorithm 1 ADMM Algorithm for A Subproblem

Input: Y , Sk , Bk , Ak , β, ρ, μ, ε, and imax.
1: Initialize: Let R = W1 = 0, and i = 0.
2: while not coverged do
3: i = i + 1.
4: Update R via (14).
5: Update A via (15).
6: Update W1 via (16).
7: Check the convergence condition �Ai+1−Ai �F

�Ai �F
≤ ε and i <

imax.
8: end while

Output: Ak+1.

2) Step 2: The solution of B subproblem can be obtained
by the following minimization problem:

Bk+1 = arg min
B

β

2



Y − B ×3 Ak+1 − Sk


2

F

+ �B�2,1 + β�B × D�1 + ρ

2
�B − Bk�2

F . (17)

Similar to A subproblem, we also apply ADMM to solve
problem of (17) because two nonsmooth terms of �2,1 and
�1-norms. Two auxiliary valuables C and G are introduced
to replace two nonsmooth terms, the problem of (17) is
equivalent to the following problem:

Bk+1 = arg min
B

β

2



Y − B ×3 Ak+1 − Sk


2

F
+ �C�2,1

+ β�G�1 + ρ

2
�B − Bk�2

F

s.t. C = B, G = B × D

whose augmented Lagrangian function is

Lμ(B, C,G,W2,W3)

= β

2



Y − B ×3 Ak+1 − Sk


2

F

+ �C�2,1 + β�G�1 + ρ

2
�B − Bk�2

F

+ μ

2
�C − B + W2/μ�2

F + μ

2
�G − B × D + W3/μ�2

F

(18)

where W2 and W3 are Lagrange multipliers, and based on the
ADMM framework, we can solve the following subproblems
via an iterative way.

a) Optimizing C: The subproblem of C can be solved by
group sparse soft-threshold shrinkage operator, then the frontal
slices of C is updated by

C j+1(:, :, n)

=

⎧⎪⎨
⎪⎩

�H(:, :, n)�F − 1
μ

�H(:, :, n)�F
H(:, :, n), if �H(:, :, n)�F >

1

μ
0, otherwise

(19)

where H = Bk+1, j − W j
2 /μ.
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b) Optimizing G: We can employ �1-norm soft-threshold
shrinkage operator to obtain the solution as follows:

G j+1 = sign(J ) max

�
|J | − β

μ
, 0

�
(20)

where J = Bk+1, j × D − W j
3 /μ.

c) Optimizing B: The problem of B is a least squares
minimization, and the solution can be obtained by

βBk+1, j+1 ×3
�
Ak+1,T Ak+1�+ (ρ + μ)Bk+1, j+1

+ μBk+1, j+1 × (DT D) = β(Y − Sk) ×3 Ak+1,T

+ ρBk + μ
�
C j+1 + W j

2 /μ
	

+ μ
�
G j+1 + W j

3 /μ
	

× DT

(21)

which is a Sylvester equation and can be efficiently solved
by SVD (small matrix dimension: d × d) and fast Fourier
transformation operator (refer to [63] Theorem 1).

d) Updating W2 and W3: The update of these two
Lagrange multipliers is calculated by⎧⎨

⎩
W j+1

2 = W j
2 + μ

�C j+1 − Bk+1, j+1
�

W j+1
3 = W j

3 + μ
�G j+1 − Bk+1, j+1 × D

�
.

(22)

In summary, the ADMM algorithm for B subproblem is
presented in Algorithm 2.

Algorithm 2 ADMM Algorithm for B Subproblem

Input: Y , Sk , Bk , Ak+1, β, ρ, μ, β, ε, and jmax.
1: Initialize: Let C = G = W2 = W3 = 0, and j = 0.
2: while not coverged do
3: j = j + 1.
4: Update C via (19).
5: Update G via (20).
6: Update B via (21).
7: Update W2 and W3 via (22).
8: Check the convergence condition �B j+1−B j �F

�B j �F
≤ ε and

j < jmax.
9: end while

Output: Bk+1.

3) Step 3: Finally, the update of sparse noise S is solved
by

Sk+1 = arg min
S

β

2



Y − Bk+1 ×3 Ak+1 − S

2

F

+ τ�S�1 + ρ

2
�S − Sk�2

F (23)

which also can be solved by �1-norm soft-threshold shrinkage
operator

Sk+1 = sign(L) max

�
|L| − τ

β + ρ
, 0

�
(24)

where L = (β(Y − Bk+1 ×3 Ak+1) + ρSk)/(β + ρ).
Summarizing the aforementioned solution of three block

subproblems, we arrive at the PAM algorithm to solve the
FGSLR1/2 model (9) for HSI denoising, as presented in
Algorithm 3. Moreover, the proposed Algorithm 3 can con-
verge to a critical point of the objection function, which is
demonstrated by the solver framework in [60].

Algorithm 3 PAM Algorithm for FGSLR1/2 Model

Input: Noisy HSI Y , rank r ≤ d ≤ min{M N, B}, and kmax.
1: Initialize: A = US1/2, B = Fold3(S1/2VT ) and k = 0,

where U, S and V are the SVD of Y(3).
2: while not coverged do
3: k = k + 1.
4: Update A via Algorithm 1.
5: Update B via Algorithm 2.
6: Update S via (24).
7: Update d = nzc(A), where nzc(A) is the number of

nonzero columns of A.
8: Remove the zero columns and zero frontal slices of A

and B, respectively.
9: Check the convergence condition �Bk+1×3Ak+1−Bk ×3Ak�F

�Bk×3Ak�F
≤

ε and k < kmax.
10: end while
Output: Denoised HSI X = B ×3 A.

D. Analysis of Computational Complexity

To illustrate the high efficiency of the proposed method,
we give the analysis of computational complexity on the
PAM-based Algorithm 3. Suppose the size of input noisy HSI
is Y ∈ R

M×N×B , and the initial rank is r ≤ d ≤ min{M N, B}.
The computational complexity is consists of three steps of A,
B, and S update. For the subproblem of A on Algorithm 1,
solving (15) of A subproblem is the main computation cost,
which involves matrix multiplication with computation com-
plexity O(d M N B). Similarly, in step 2, the main computation
cost of Algorithm 2 is to solve B. Although it needs to apply
the SVD operator, the dimension of the matrix is too small,
thus it cannot consume much cost. The computation complex-
ity of Sylvester equation of B is O(d2 M N + d M N log M N ).
Finally, the solution of S is a soft-threshold shrinkage opera-
tor, which has computation complexity O(M N B). In sum-
mary, the total computation complexity of Algorithm 3 is
O(d M N B + d2 M N + d M N log M N + M N B) at every
iteration. It is worth noting that d is decreasing with the
iteration increase. While the computation complexity of only
one SVD operator for input HSI Y is O(M N B min{M N, B}),
thus the proposed method is lower computation cost than other
low-rank approximation-based HSI denoising methods.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, extensive simulated and real experimental
results are presented to demonstrate the performance of the
proposed FGSLR methods. Seven representative low-rank
approximation methods are considered for quantitative and
visual comparison, i.e., LRTV [21] (nuclear norm and
TV-based method), LSSTV [22] (weighted nuclear norm and
SSTV-based method), WSNM [24] (Schatten p-norm-based
method), NMoG [31] (low-rank factorization-based method),
LRTDTV [38] (Tucker decomposition and SSTV-based
method), TLR-SSTV [35] (t-SVD and SSTV-based method),
and LRTDGS [39] (Tucker decomposition and group
sparsity-based method). We conduct all experiments on
MATLAB R2017b using a desktop of 16-GB RAM, with an
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Intel Core i7-8700K CPU at 3.70 GHz. For all the competitors,
the settings of parameters are adjusted as suggested in the
literature, while for the proposed FGSLR, we will provide
some careful discussions on the selection of parameters in the
discussion part. The code of our method will be available at
https://chenyong1993.github.io/yongchen.github.io/.

A. Simulated Experiments

To evaluate the noise removal effect of our FGSLR methods,
we conduct simulated experiments by comparing both visual
and quantitative performances. Two representative clean HSI
datasets are employed to simulate noisy HSI, i.e., HYDICE
Washington DC Mall data (WDC1) and hyperspectral Pavia
City Center data (PaC2). Due to the big size of original data,
we extract a subregion with the size of 256 × 256 × 191
and 200 × 200 × 80 for WDC, and PaC, respectively. There
are several different types of noise in real HSI, including
Gaussian, impulse, dead lines, and stripes noises. To simulate
these scenarios as best as possible, we conduct five different
noise cases based on the mixed noise setting of compared
methods to thoroughly compare. Before the noise simulation,
we normalize the gray value of each band into [0, 1].

Case 1 (Gaussian Noise): Zero-mean Gaussian noise with
noise variance 0.15 is added to all bands.

Case 2 (Gaussian Noise + Impulse Noise): Mixtures of
zero-mean Gaussian noise and impulse noise are added to
all bands. The variances of Gaussian noise and percentages
of impulse noise are randomly sampled within the range of
[0.05, 0.2] and [0, 0.2], respectively.

Case 3 (Gaussian Noise + Impulse Noise + Dead Lines):
Mixtures of zero-mean Gaussian noise, impulse noise, and
dead lines are added to HSI. The variances of Gaussian noise
are randomly sampled within the range of [0.05, 0.2], and the
percentages of impulse noise are set as 0.05 to all bands.
Moreover, 40% of bands are added dead lines whose numbers
are from 5 to 12.

Case 4 (Gaussian Noise + Impulse Noise + Stripes):
Mixtures of zero-mean Gaussian noise, impulse noise, and
stripes are added to HSI. The distributions of Gaussian and
impulse noises are the same as Case 3. Moreover, 40% of
bands are added stripes whose number is from 5 to 12.

Case 5 (Gaussian Noise + Impulse Noise + Dead Lines +
Stripes): Mixtures of zero-mean Gaussian noise, impulse
noise, dead lines, and stripes are added to HSI. The distribu-
tions of Gaussian and impulse noises are the same as Case 2.
Moreover, we, respectively, select 20% of bands in which to
add dead lines and stripes whose numbers are all from 5 to 12.
Furthermore, the number of overlapped bands of dead lines
and stripes is set as 5% of bands.

Since the ground-truth HSI is given for the simulated exper-
iments, we employ five quantitative picture indices for com-
parison, including peak signal-to-noise ratio (PSNR), structure
similarity (SSIM), feature similarity (FSIM), erreur relative
global adimensionnelle de synthese (ERGAS), and spectral

1https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
2http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_

Scenes

angle mapper (SAM) [39]. The five indices contain the evalu-
ation of spatial and spectral information preservation, and the
values of PSNR, SSIM, and FSIM are obtained by averaging
all bands. The larger PSNR, SSIM, and FSIM are, and the
smaller ERGAS and SAM are, the better HSI denoising result
is.

1) Experimental Results on WDC Dataset: Table II lists the
five quantitative indices comparison of different HSI denoising
methods on the simulated WDC dataset. The best results
among all methods are highlighted in bold in each case, and
we underline the value as the second-best. From the table,
we can see that the proposed FGSLR methods can significantly
outperform other methods with respect to the five evaluation
indices. Especially, FGSLR1/2 achieves the best results in all
cases, and the second-best results are obtained by FGSLR2/3.
Based on the better results of FGSLR than other methods,
it demonstrates that the FGSLR is better to approach the rank
minimization than other approximations. Although LRTDTV
and LRTDGS employ the low-rank tensor decomposition to
capture the high correlation of HSI, they cannot dynamically
adjust the rank with the iteration increase, and the results
are largely determined by the rank selection. Moreover, it is
observed that FGSLR1/2 achieves better results than FGSLR2/3

in all cases, which also verifies the better rank approximation
with the selection of a smaller p. In summary, our FGSLR
methods can obtain the best quantitative results.

Due to the page limitation, we present the most complex
noise Case 5 for visual comparison. Fig. 1 presents the
denoising results of the simulated WDC dataset under Case 5,
and the false color image is composed of bands 100, 9, and 7.
As shown in Fig. 1(b), the image is seriously contaminated by
a mixture of Gaussian, impulse, dead lines, and stripes noises.
After deionised by all methods, the mixed noises are largely
damped. However, LRTV, LSSTV, WSNM, and NMoG cannot
thoroughly remove the noises, and some Gaussian noises left
in the results as shown in the enlarged box of Fig. 1(c)–(f).
Although LRTDTV successfully removes the mixture noise,
it obtains the over-smoothed denoising results. TLR-SSTV
cannot remove the mixed noise, especially for stripe and
dead line noises. LRTDGS and FGSLR2/3 perform satisfactory
results, but image details are slightly destroyed shown in the
enlarged box. From Fig. 1(j), we can observe that FGSLR1/2

effectively removes the mixture noise as well as restore the
image details and structures of the original image.

Fig. 2 shows the values of PSNR of each band provided
by different methods on Cases 1–5. It can be seen that the
proposed FGSLR methods achieve the higher PSNR values
than other methods in almost all bands for every case, which
verifies the robustness of the proposed methods on restoring all
bands and also demonstrates the superiority of the nonconvex
low-rank approximation compared with others.

2) Experimental Results on PaC Dataset: Five quantitative
indices comparison on simulated PaC dataset under different
noise cases are listed in Table III. From the results, we again
find that our FGSLR methods achieve the best results in all
compared methods on Cases 1–5, and FGSLR1/2 also obtains
the better results than FGSLR2/3. Tensor low-rank-based
methods LRTDTV and LRTDGS perform better results than
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TABLE II

FIVE QUANTITATIVE INDICES COMPARISON OF DIFFERENT HSI DENOISING METHODS ON SIMULATED WDC DATASET

Fig. 1. Denoising results of simulated WDC dataset under Case 5. The false color image is composed by bands (R: 100, G: 9, and B: 7). (a) Original.
(b) Noisy. (c) LRTV. (d) LSSTV. (e) WSNM. (f) NMoG. (g) LRTDTV. (h) TLR-SSTV. (i) LRTDGS. (j) FGSLR2/3. (k) FGSLR1/2.

Fig. 2. PSNR values of each band of simulated WDC dataset. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5.

Fig. 3. Denoising results of simulated PaC dataset under Case 5. The false color image is composed by bands (R: 69, G: 57, and B: 5). (a) Original.
(b) Noisy. (c) LRTV. (d) LSSTV. (e) WSNM. (f) NMoG. (g) LRTDTV. (h) TLR-SSTV. (i) LRTDGS. (j) FGSLR2/3. (k) FGSLR1/2.

traditional matrix low-rank denoising methods. Although the
PSNR values of LRTDGS are smaller than LRTDTV, the val-
ues of another four indices obtained by LRTDGS are more
superior to LRTDTV. Summarizing the quantitative indices
of the WDC dataset, we can conclude that the proposed

FGSLR methods are relatively robustness for HSI denoising
since they can achieve the best quantitative results on different
datasets under a variety of noise cases.

The visual comparison of the PaC dataset on mixture noise
Case 5 is presented in Fig. 3, and we use bands 69, 57, and 5 to
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TABLE III

FIVE QUANTITATIVE INDICES COMPARISON OF DIFFERENT HSI DENOISING METHODS ON SIMULATED PAC DATASET

Fig. 4. PSNR values of each band of simulated PaC dataset. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5.

compose the color image for better visualization. Although
most of the methods can eliminate the obvious noise, LRTV
and NMoG change the contrast as shown in the enlarged box.
TLR-SSTV can remove the Gaussian and impulse noise, but
the stripe and dead line also exist in the image. Moreover,
the Gaussian noise cannot be completely removed by LSSTV
and LRTDTV. LRTDGS obtains satisfactory results compared
with other methods as displayed in Fig. 3(i). Clearly, the best
visual results of FGSLR are shown in Fig. 3(j) and (k), not
only removing all mixture noise but also preserving the image
details and contrast, whereas other methods achieve poorly.

The values of PSNR of each band on the PaC dataset are
presented in Fig. 4. From the results, we can see that LRTV,
WSNM, NMoG, LRTDTV, and TLR-SSTV are not very robust
since the changing tendency of PSNR on each band are relative
instability. Although the PSNR of FGSLR is not the best result
in Case 1, we obtain the best result on averaging all bands
displayed in Table III. Moreover, FGSLR2/3 and FGSLR1/2

obtain the obvious superiority in almost all bands under
Cases 2–5 when compared with other methods. In summary,
the proposed method achieves a significant improvement for
HSI denoising in terms of visual and quantitative evaluation.

B. Real Experiments

In this section, we test extensive simulated experiment to
illustrate the superiority of our method. To further demonstrate
that our method can apply to the real dataset, three real-world
HSI are employed for real data test, i.e., GF-5 dataset,
HYDICE Urban dataset,3 and AVIRIS Indian Pines dataset.4

1) Experimental Results on GF-5 Dataset: The GF-5
dataset was acquired by the GF-5 satellite, which was devel-
oped by the Chinese Aerospace Science and Technology
Corporation and launched in 2018. The original size of the
GF-5 dataset is 2100 × 2048 × 180, and there are 25 bands
that are miss information. After removing the miss bands
and extracting a small region, a sub-HSI with the size of
256 × 256 × 155 is chosen for experiments. This dataset
is seriously degraded by the mixture of Gaussian, stripes and
dead lines noises as shown in Fig. 5(a).

Fig. 5 presents the denoising results on the false color
image used bands 96, 154, and 151 to compose. From
the results of the enlarged box in Fig. 5, we can easily

3http://www.tec.army.mil/hypercube
4https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html

Authorized licensed use limited to: Jiangxi Normal University. Downloaded on September 18,2021 at 01:28:51 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: HSI DENOISING USING FGSLR 11

Fig. 5. Denoising results of real GF-5 dataset. The false color image is composed by bands (R: 96, G: 154, and B: 151). (a) Noisy. (b) LRTV. (c) LSSTV.
(d) WSNM. (e) NMoG. (f) LRTDTV. (g) TLR-SSTV. (h) LRTDGS. (i) FGSLR2/3. (j) FGSLR1/2.

Fig. 6. Vertical mean profiles of real GF-5 dataset on band 154. (a) Noisy. (b) LRTV. (c) LSSTV. (d) WSNM. (e) NMoG. (f) LRTDTV. (g) TLR-SSTV.
(h) LRTDGS. (i) FGSLR2/3. (j) FGSLR1/2.

Fig. 7. Denoising results of real Urban dataset. The false color image is composed by bands (R: 207, G: 104, and B: 139). (a) Noisy. (b) LRTV. (c) LSSTV.
(d) WSNM. (e) NMoG. (f) LRTDTV. (g) TLR-SSTV. (h) LRTDGS. (i) FGSLR2/3. (j) FGSLR1/2.

Fig. 8. Horizontal mean profiles of real Urban dataset on band 207. (a) Noisy. (b) LRTV. (c) LSSTV. (d) WSNM. (e) NMoG. (f) LRTDTV. (g) TLR-SSTV.
(h) LRTDGS. (i) FGSLR2/3. (j) FGSLR1/2.

observe that compared methods can remove the Gaussian
noise, but fail to remove the stripes and dead lines. As dis-
played in Fig. 5(i) and (j), the proposed FGSLR methods
successfully eliminate the mixture noise as well as restores
the underlying image structures. To better understand the
existence of stripes in the image, we present the vertical mean
profiles of band 154 in Fig. 6. Due to the effects of stripes,
there are several fluctuations in the curves of all compared
methods. From Fig. 6(i) and (j), the fluctuations are strongly
decreased after denoising, which indicates the denoised ability
of removing the stripes of FGSLR than other methods.

2) Experimental Results on Urban Dataset: The Urban
dataset is a representative real dataset for testing the denoising
method due to the complex noise degradation of this data. The
size of the original Urban dataset is 307 × 307 × 210, and it is
degraded by a variety of noise types, such as Gaussian, stripes,
atmosphere, and water absorption. Although some of the bands
that are seriously polluted by atmosphere and water cannot
provide any information, we also use all bands as the input
dataset to confirm the robustness of the denoising methods.

Fig. 7 shows the restored results of false color images
composed by bands 220, 150, and 109. As displayed
in Fig. 7(a), the image contains many mixture noises. After
denoising, the noises are effectively reduced by all meth-
ods, but the image details are not handled very well using

some methods. From the enlarged box of Fig. 7(e), NMoG
completely removes the noise and restore the image details,
but the image contrast is seriously changed. As displayed
in the red enlarged box, LSSTV, WSNM, TLR-SSTV, and
FGSLR2/3 effectively remove the noise and restore the image
structure, but there are some residual stripes in another region
as shown in the blue enlarged box. LRTDTV and LRTDGS
eliminate the noises by blurring the image detail presented
in Fig. 7(f) and (h). On the contrary, FGSLR1/2 can effectively
remove the noise and preserve the spectral since the contrast is
not changed. Fig. 8 presents the horizontal mean profiles of the
real Urban dataset on band 207. The curves of LRTV, LSSTV,
and FGSLR2/3 exist minor fluctuations, which indicates the
stripes in the image. The blurred results of LRTDTV and
LRTDGS can be observed from the smoother horizontal mean
profiles produced by them. The curve of FGSLR1/2 is more
reasonable than other methods as shown in Fig. 8(i).

3) Experimental Results on Indian Pines Dataset: The third
real dataset is Indian Pines, which was collected by NASA
AVIRIS instrument in Northwestern Indiana in 1992. This
dataset contains 145 × 145 spatial pixels and 220 spectral
bands and is mainly polluted by Gaussian, impulse noise,
atmosphere, water absorption, and others.

Fig. 9 shows the denoising performance of all compared
methods on false color image (R: 220, G: 150, and B: 109).
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Fig. 9. Denoising results of real Indian pines dataset. The false color image is composed by bands (R: 220, G: 150, and B: 109). (a) Noisy. (b) LRTV.
(c) LSSTV. (d) WSNM. (e) NMoG. (f) LRTDTV. (g) TLR-SSTV. (h) LRTDGS. (i) FGSLR2/3. (j) FGSLR1/2.

Fig. 10. Horizontal mean profiles of real Indian pines dataset on band 109. (a) Noisy. (b) LRTV. (c) LSSTV. (d) WSNM. (e) NMoG. (f) LRTDTV.
(g) TLR-SSTV. (h) LRTDGS. (i) FGSLR2/3. (j) FGSLR1/2.

Fig. 11. Sensitivity analysis of parameters β and τ . (Top row) Case 1.
(Bottom row) Case 5. (a) FGSLR2/3. (b) FGSLR1/2.

From Fig. 9, the image is seriously mixed by Gaussian and
impulse noises. LRTV, LRTDTV, TLR-SSTV, and LRTDGS
smooth out the image details. LSSTV removes the noise com-
pletely, but the spectral information is more or less destroyed
as shown in the enlarged box. WSNM obtains the blurry effects
in some regions, and NMoG creates artifact information. The
superiorly of our proposed FGSLR methods can be reflected
by the more natural denoising results compared with other
results. This phenomenon also can be observed by the hor-
izontal mean profiles of the blue channel band 109 shown
in Fig. 10, FGSLR methods achieve the more suitable results
since the curves are not over-smoothed.

C. Discussion of Model Analysis

To further illustrate the effectiveness of the proposed
FGSLR methods, the superiorities and robustness of the model
parameters should be discussed. There are several parameters
in the proposed FGSLR, i.e., regularization parameters β, β,
τ , and α (FGSLR2/3 model), penalty parameter μ, proximal
parameter ρ, and initial rank d , which are relatively robust
to obtain a satisfactory result. From Theorem 1, for any
α > 0, (8) holds, thus we set α = 1 in FGSLR2/3 model.

Fig. 12. Sensitivity analysis of parameters β and μ. (Top row) Case 1.
(Bottom row) Case 5. (a) FGSLR2/3. (b) FGSLR1/2.

Parameter ρ in proximal term is used to guarantee the the-
oretical convergence of PAM solver, and ρ = 0.1 is set in
FGSLR model as recommended in [63]. Moreover, to show
the robustness of rank selection of the proposed model, we fix
d = 20 in all experiments of FGSLR. In the next, we inves-
tigate the sensibility of other parameters. Case 1 (Gaussian
noise case) and Case 5 (mixed noise case) are selected as
experimental object, and we use PSNR as the measure to
analyze the change of the parameters.

1) Analysis of β and τ : β and τ are employed to constrain
the fidelity term and sparse noise term. Fig. 11 presents the
relationship of parameters β and τ . From the results, we can
find that the changed curves of PSNR are consistent for
FGSLR2/3 and FGSLR1/2, which indicates the robustness of
different FGSLR models with the same parameters. Moreover,
the best results are achieved when τ = 0.01 and β is in the
range of [0.5, 5]. Based on this observation, we fix τ = 0.01
and β = 0.5 or 5 for FGSLR methods in all experiments.

2) Analysis of β and μ: β is used to constrain the TV
term for the factor, and μ is a penalty parameter in the inter
ADMM algorithm. The relationship of these two parameters
is displayed in Fig. 12. It can be observed that the best
results are performed with parameter β is set 0.5 and 0.1 for
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TABLE IV

RUNNING TIME (IN SECONDS) OF DIFFERENT METHODS FOR THE REAL DATASET

Fig. 13. Sensitivity analysis of rank d of different methods. (a) Case 1.
(b) Case 5.

FGSLR2/3 and FGSLR1/2, respectively. When β is in the range
of [0.1, 0.5], τ is relatively robustness in [5, 10]. Therefore,
β = 0.1 or 0.5 and μ = 5 or 10 are set for FGSLR methods
in all experiments.

3) Robustness of Rank Selection: To demonstrate the robust-
ness of rank selection of the proposed FGSLR methods,
we compare the sensitivity analysis of rank d for different
methods that need to preestablish the rank of HSI. Fig. 13
shows the PSNR curves of different rank d for compared
methods. From the results, we can find that LRTV, LRTDTV,
and LRTDGS have an optimal rank selection for satisfactory
results. When the selected rank is greater than the optimal
rank, the results are rapidly decreased, which illustrates the
deficiency of this kind of approach. Although the rank selec-
tion of NMoG is robust in Case 1, the results are also poor
with the increase of rank in Case 5. In contrast, the results of
FGSLR methods are very robust with the increase of rank d
(d > r , r is optimal rank). Therefore, the rank of FGSLR is
set d = 20 in all experiments, and the compared method is
manually adjusted to set the optimal rank.

4) Automatic Adjustment of Rank d: From Fig. 13,
we demonstrate the robustness of rank selection of our method.
The reason is that we minimize the number of nonzero
columns of the factor, and the rank can be automatically
adjusted. Fig. 14 presents the change of rank d with the itera-
tion increases. It is obvious to see that the rank d of FGSLR2/3

and FGSLR1/2 is gradually decreased as the iteration increases
and converges to a stable value. Moreover, we can find that
the convergence of rank d of FGSLR1/2 method is faster
than FGSLR2/3, which also illustrates the fact that FGSLR1/2

obtains the better experimental results and rank approximation
than FGSLR2/3.

5) Running Time: From the computation complexity of
Algorithm 3, FGSLR is a high-efficiency method compared to
other low-rank approximation approaches. Table IV lists the
running time of different methods for the three real datasets.

Fig. 14. Change of rank d with the iteration increases. (a) Case 1. (b) Case 5.

Fig. 15. Relative change values (�Bk+1 ×3 Ak+1 − Bk ×3 Ak�F )/
(�Bk ×3 Ak�F ) versus the iteration number of the FGSLR solver in the
simulated Pavia dataset on Case 5. (a) FGSLR2/3. (b) FGSLR1/2.

Although the solved algorithm needs to perform the inter and
outer iterations, the time cost of the proposed method is fastest
compared with other methods, corresponding to the fact of
lower computation cost of the FGSLR.

6) Numerical Convergence: Fig. 15 shows the relative
change value of the proposed FGSLR methods on the sim-
ulated PaC dataset. From the curves, we can see that the
relative change value converges to zero as the iteration number
increases, indicating the numerical convergence guarantee of
the proposed method.

V. CONCLUSION

In this article, two novel FGSLR methods were proposed
for HSI denoising. The global spectral correlation of HSI
was efficiently depicted by FGSLR, which can embody the
advantages of both rank approximations of Schatten-p norm
and low-rank factorization, i.e., 1) tighter rank approxima-
tion; 2) low computation cost; and 3) robust to rank selec-
tion. Moreover, we employed TV regularization to smooth
the factor so as to preserve the spatial piecewise constant
structure of HSI. A PAM framework with the theoretical
convergence guarantee was developed to solve the FGSLR
model efficiently. Both simulated and real-word datasets were
conducted to demonstrate the performances and superiorities
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of the proposed methods than state-of-the-art HSI denoising
methods.

In the future, we will try to extend the FGSLR to other types
of high-dimension data applications with computation burden
or difficulty of rank selection, such as compressive sensing,
target detection, and reconstruction of missing information.
Moreover, the DCNN can be embedded in FGSLR to fully
exploit the spatial information.
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