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Abstract— Fusing a pair of low-spatial-resolution hyperspec-
tral image (LR-HSI) and high-spatial-resolution multispectral
image (HR-MSI) has been regarded as an effective and eco-
nomical strategy to achieve HR-HSI, which is essential to
many applications. Among existing fusion models, the tensor
ring (TR) decomposition-based model has attracted rising atten-
tion due to its superiority in approximating high-dimensional
data compared to other traditional matrix/tensor decomposition
models. Unlike directly estimating HR-HSI in traditional models,
the TR fusion model translates the fusion procedure into an
estimate of the TR factor of HR-HSI, which can efficiently
capture the spatial–spectral correlation of HR-HSI. Although
the spatial–spectral correlation has been preserved well by
TR decomposition, the spatial–spectral continuity of HR-HSI is
ignored in existing TR decomposition models, sometimes resulting
in poor quality of reconstructed images. In this article, we intro-
duce a factor smoothed regularization for TR decomposition to
capture the spatial–spectral continuity of HR-HSI. As a result,
our proposed model is called factor smoothed TR decomposition
model, dubbed FSTRD. In order to solve the suggested model,
we develop an efficient proximal alternating minimization algo-
rithm. A series of experiments on four synthetic datasets and one
real-world dataset show that the quality of reconstructed images
can be significantly improved by the introduced factor smoothed
regularization, and thus, the suggested method yields the best
performance by comparing it to state-of-the-art methods.

Index Terms— Hyperspectral image (HSI) and multispectral
image (MSI) fusion, proximal alternating minimization (PAM),
smoothed regularization, tensor ring (TR) decomposition.

I. INTRODUCTION

HYPERSPECTRAL imaging has attracted an amount of
attention since it can simultaneously collect images of

the same scene across visible and infrared wavelengths. The
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collected hyperspectral image (HSI) with dense bands has
found a wide range of applications on remote sensing and
computer vision, such as classification [1], unmixing [2], [3],
and recognition [4]. However, due to the critical tradeoffs
between the spatial and spectral resolutions of imaging tech-
niques, HSI with a high spectral resolution usually has a
low spatial resolution (LR). Directly improving the spatial
resolution in the hyperspectral imaging system is costly and
difficult due to various hardware limitations. Fortunately, mul-
tispectral sensors can acquire an image with a higher spatial
resolution but with a lower spectral resolution, such as the
RGB image, multispectral image (MSI), and panchromatic
image. Since both LR-HSI and high-spatial-resolution MSI
(HR-MSI) contain valuable information, LR-HSI and HR-MSI
fusion has become an effective technique to enhance the spatial
resolution of LR-HSI. The fused image is called HR-HSI,
which is desired to have both high-spectral and high-spatial
resolutions.

To date, extensive methods have been proposed for fusing
LR-HSI and HR-MSI, and they can be generally divided
into three categories [5]–[7]: pansharpening-based approaches,
deep learning (DL)-based approaches, and factorization-based
approaches. The pansharpening techniques aim to obtain an
HR-MSI by fusing an LR-MSI with a high-resolution panchro-
matic image. The fusion problem of LR-HSI and HR-MSI can
be treated as many pansharpening subproblems, where the role
of each band of HR-MSI is the same as that of panchromatic
image. Pansharpening-based approaches are mainly based on
two categories: component substitution (CS) [8], [9] and
multiresolution analysis (MRA) [10], [11]. The advantages
of these techniques are low computational cost and fast
implementation. However, the spectral information is a lack
in a single panchromatic image compared with the desired
HR-HSI; thus, these methods usually cause spectral distortion.

Due to the high efficiency and potential performance of
deep convolution neural network (CNN) in computer vision
tasks, DL-based fusion methods have attracted rising atten-
tion. DL-based pansharpening methods [12]–[16] yielded the
HR-MSI by learning a nonlinear mapping function under the
input of the original MSI and high-resolution panchromatic
image, and these methods can be extended for LR-HSI and
LR-MSI fusion via modifying the first and last convolution
layers. Recently, the DL methods that directly combine the
characteristics of LR-HSI and HR-HSI as the input and then
map to the HR-HSI were widely extended to the fusion of
LR-HSI and HR-MSI [17]–[24]. For example, Wang et al. [20]
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proposed a deep iterative network for blind LR-HSI and
HR-MSI fusion. One major advantage of DL-based methods is
that they can obtain satisfactory results since CNN possesses a
strong ability to explore the image features. However, the train-
ing of these methods generally requires plenty of paired
LR-HSI and HR-HSI, which is difficult to collect. To tackle
such an issue, unsupervised DL methods are proposed to fuse
LR-HSI and HR-MSI [25]–[27]. For example, Wang et al. [27]
presented a variational probabilistic autoencoder framework
for unsupervised LR-HSI and HR-MSI fusion.

Factorization-based approaches have been widely presented
for LR-HSI and HR-MSI fusion since these methods are
unsupervised and effective. This kind of method regards
the reconstruction of HR-HSI as an ill-posed problem and
recovers the HR-HSI by minimizing an energy function.
By modeling the HR-HSI as 2-D or high-dimensional data,
there are two ways to factorize the HR-HSI, i.e., matrix
factorization-based and tensor factorization-based approaches.
Matrix factorization-based approaches assume that each spec-
tral signature of HR-HSI can be mathematically represented
as a linear combination of several endmembers, and they
factorize the desired HR-HSI as the spectral basis and
coefficient [28]–[37]. Based on the matrix factorization strat-
egy, the reconstruction of HR-HSI is transformed to the esti-
mation of spectral basis and coefficient. However, the strategy
of vectorizing each band will destroy the intrinsic structure
in the process of reconstructing the HR-HSI. Since LR-HSI,
HR-MSI, and HR-HSI are intrinsically 3-D, they can be
expressed by tensor data. Motivated by this observation,
the idea of tensor factorization becomes very popular in the
fusion of LR-HSI and HR-MSI. Benefit from the strong
representation ability of the tensor factorization, this kind
of tensor factorization-based method achieves state-of-the-art
results. So far, there are some well-known tensor factorization
schemes, including Tucker decomposition [38]–[42], Canon-
ical polyadic (CP) decomposition [43], [44], tensor singular
value decomposition (t-SVD) [45]–[48], tensor-train decom-
position [49], and block-term decomposition [50], applied
to LR-HSI and HR-MSI fusion. Besides these, a new ten-
sor factorization called tensor ring (TR) decomposition was
recently suggested in [51]. Specifically, TR decomposition is
defined to decompose a high-order tensor as a sequence of
cyclically contracted third-order tensors. TR decomposition
inherits the representation ability of traditional matrix/CP
decomposition and extends the low-rank exploration of Tucker
decomposition [52]–[54]. Inspired by the effectiveness of TR
decomposition, the tensor methods for the fusion of LR-HSI
and HR-MSI are based on the TR framework [55], [56].

Matrix/tensor decomposition can effectively explore the
global and local redundant information of HR-HSI and trans-
late the high-dimensional data in a relatively low-dimensional
space by decomposing the HR-HSI as a set of factors.
However, when these models are introduced for the fusion
of LR-HSI and HR-MSI, some other factor prior knowl-
edge, such as the smoothed structure, was ignored, result-
ing in the loss of spatial–spectral piecewise smoothness of
reconstructed HR-HSI. There are many methods to improve
the fusion performance by considering the factor property

under the framework of matrix factorization. For example,
Simões et al. [29] first introduced factor vector total vari-
ation (TV) to preserve the spatial smoothness of HR-HSI;
Wei et al. [31] incorporated a factor sparse regularization
into matrix factorization framework for LR-HSI and HR-MSI
fusion. From the perspective of tensor factorization framework,
Li et al. [57] presented the coupled Tucker decomposition with
factor core tensor sparse prior for fusing LR-HSI and HR-MSI;
Ding et al. [50] proposed a fusion method by using latent
factor TV and low-rank regularized block-term decomposi-
tion. Hence, incorporating the additional factor regularization
into the factorization-based framework is an effective way
to improve the accuracy of reconstructed results, especially
when the data is seriously polluted by noise [58]. However,
although TR decomposition is an impressive representation
for high-dimensional data and successfully applied to fuse
LR-HSI and HR-MSI [55], the existing TR decomposition-
based methods ignored the TR factor regularization, resulting
in the lack of consideration of spatial–spectral continuity
in HR-HSI. A toy example is presented in Fig. 1 to illus-
trate the necessity of TR factor regularization if the prior
of spatial–spectral continuity exists in HR-HSI. It can be
observed from the first row of Fig. 1 that, when the row
fibers of the TR factor are nonsmooth, then the signatures
of the resulted tensor in different dimensions are nonsmooth.
In contrast, the smoothed TR factor will generate smoothed
tensor shown in the second row of Fig. 1. Thus, the TR
decomposition model still has the potential to improve.

A. Contributions

In this article, we propose a factor-smoothed TR decompo-
sition (FSTRD)-based method for the fusion of LR-HSI and
HR-MSI. To fully explore the high spatial–spectral correlation
of HR-HSI, we introduce the representative and flexible TR
decomposition to represent it. Under the TR representation
of HR-HSI, the degradation process of LR-HSI and HR-MSI
from HR-HSI is formulated as the TR decomposition format.
Moreover, we explore the TR factor to inherit the potential
characteristics of the original HR-HSI. As the HR-HSI has the
piecewise smooth characteristics in the spatial–spectral dimen-
sion, it is necessary to incorporate the smoothed regularization
into the TR factor to preserve the spatial–spectral information
of HR-HSI. Based on these analyses, the reconstruction of
HR-HSI is transformed to estimate the TR factor from the
input LR-HSI and HR-MSI. An efficient proximal alternating
minimization (PAM) algorithm is designed to solve the pro-
posed model. A series of experimental results on simulated and
real datasets illustrate that the proposed FSTRD method out-
performs the state-of-the-art factorization-based approaches.

B. Related Work

In the literature, three representative tensor models have
been proposed for LR-HSI and HR-MSI fusion, including
CP decomposition [43], [44], Tucker decomposition [38],
[40], [41], [57], and t-SVD [45]. The tensor decomposition
is extended from the matrix factorization [28]–[34], [59]
[see Fig. 2(a)] to explore the spatial–spectral correlation of
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Fig. 1. Signatures curve of two tensors generated by different TR factors. First row: the row fibers of TR factors without smooth structure. Second row: the row
fibers of TR factors with smooth structure. (a)–(c) Distribution of each row fiber of the TR factors G(1) ∈ R

2×100×2, G(2) ∈ R
2×100×2, and G(3) ∈ R

2×100×2,
respectively. (d) Distributions of row, column, and spectral signatures randomly extracted from the tensor X = �(G(1),G(2),G(3)).

Fig. 2. Matrix/tensor decomposition of a 3-D tensor with the size of R
M×N×B . For (a), the tensor is reshaped to the matrix. (a) Matrix factorization.

(b) CP decomposition. (c) Tucker decomposition. (d) t-SVD. (e) TR decomposition.

HR-HSI. The CP decomposition-based approaches decom-
pose the HR-HSI into the sum of rank-1 tensors, as pre-
sented in Fig. 2(b), which assumes that the correlations of
spatial–spectral dimensions are the same. However, the corre-
lation of spectral dimension is strong than the spatial dimen-
sion in true HR-HSI. The Tucker decomposition [see Fig. 2(c)]
decomposes the HR-HSI by using one core tensor and a set
of factor matrices. However, the core tensor is independent
of the LR-HSI and HR-MSI degradation processing from the
HR-HSI. Moreover, since the existence of the core tensor,
the number of decomposed parameters increases exponentially
following its dimensions. t-SVD [see Fig. 2(d)] is based on
a new definition of tensor–tensor product, which maintains

some properties that are similar to the matrix case. How-
ever, the degradation process of LR-HSI and HR-MSI cannot
be represented under the t-SVD framework, and it mainly
explores the correlation of one mode of high-dimensional data.
In this work, we propose to employ the TR decomposition
for approximating the HR-HSI. The number of decomposed
variables is much smaller than that of Tucker decomposi-
tion. Moreover, all TR factors participate in the degradation
process of LR-HSI and HR-MSI, as shown in Fig. 3. Further-
more, according to (3), TR factors can be circularly shifted
and treated equivalently; thus, it can effectively balance the
correlations of all dimensions than CP decomposition and
t-SVD.
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Fig. 3. Illustration of the proposed method.

Although the TR decomposition has been widely used in
other fields recently, such as high-dimensional image com-
pletion [52], [53] and HSI restoration [60], these applications
that use TR decomposition try to restore the image from the
missing or noisy data. The proposed FSTRD, however, tries to
reconstruct the HR-HSI from the paired LR-HSI and HR-MSI
and illustrates the degradation model of fusion problem from
the perspective of TR decomposition (see Fig. 3). Moreover,
the proposed method first explores that each TR factor inherits
the potential piecewise smoothness of original HR-HSI in
each dimension and then incorporates the factor smoothed
regularization to the TR framework, which can improve the
application ability of TR decomposition. The framework of
the proposed method is shown in Fig. 3.

The remainder of this article is organized as follows.
Section II describes the notations and related fusion frame-
work. The proposed fusion model and its optimization are
presented in Section III. Section IV shows the extensive
experimental results and discussions. The conclusion is given
in Section V.

II. NOTATIONS AND PROBLEM FORMULATION

A. Notations

In this article, we use the same tensor notations mainly
from the literature [51], [61]. Lowercase and uppercase are
employed to denote scalars, i.e., m, M ∈ R. Boldface lower-
case is employed to denote vectors, i.e., x ∈ R

M . Matrices
are denoted by boldface capital letter, i.e., X ∈ R

M×N .
Tensors with n-order (n ≥ 3) are denoted by calligraphic
letter, i.e., X ∈ R

I1×I2×···×In , where Ii is the dimension of
the i th mode. Thus, vectors and matrices are the first- and
second-order tensors, respectively. X (i1, i2, . . . , in) or xi1i2,...,in
is the element value of X in location (i1, i2, . . . , in). Moreover,
we summarize the operations of tensor in Table I. In the next,
we give the definition of TR decomposition used in this article.

TR decomposition decomposes a tensor into a series of
third-order factor tensors G = {G(1),G(2), . . . ,G(n)}, where

G(k) ∈ R
rk×Ik×rk+1 [51]. For a n-order tensor X ∈ R

I1×I2×···×In ,
its TR decomposition is defined as

X (i1, i2, . . . , in) = Tr(G(1)(i1)G(2)(i2), . . . , G(n)(in))

= Tr

�
n�

k=1

G(k)(ik)

�
(1)

where G(k)(ik) ∈ R
rk×rk+1 denotes the ik th lateral slice matrix

of factor tensor G(k) and Tr(·) is the matrix trace operation.
Since trace operation is defined for square matrix, TR decom-
position sets r1 = rn+1, and r = [r1, r2, . . . , rn] is the TR-rank
of tensor X . In this article, TR decomposition is briefly
denoted as notation X = �(G).

The multilinear product of two adjacent factor tensors G(k) ∈
R

rk×Ik×rk+1 and G(k+1) ∈ R
rk+1×Ik+1×rk+2 is denoted as G(k,k+1) ∈

R
rk×Ik Ik+1×rk+2 , and each lateral slice of G(k,k+1) is defined as

G(k,k+1)(( jk − 1)Ik + ik) = G(k)(ik)G(k+1)( jk) (2)

for ik = 1, . . . , Ik, jk = 1, . . . , Ik+1, where G(k,k+1) ∈
R

rk×rk+2 . Based on the multilinear product operation, G(1,...,k) ∈
R

r1×I1,...,Ik×rk+1 is the multilinear product of the first k fac-
tor tensors, G(k+1,...,n) ∈ R

rk+1×Ik+1 ,...,In×r1 is the multilin-
ear product of the last n − k factor tensors, and G �=k ∈
R

rk+1×Ik+1,...,In I1,...,Ik−1×rk is the multilinear product of all factor
tensors except kth factor tensor.

Let
←−X k ∈ R

Ik×Ik+1 ···×In×I1×···×Ik−1 be a n-order tensor;
then,

←−X k can be regarded as the circularly shifts of the
dimensions of X by k. If the TR decomposition of X is
X = �(G(1),G(2), . . . ,G(n)), then the TR decomposition of←−X k can be expressed as

←−X k = �(G(k),G(k+1), . . . ,G(n),G(1), . . . ,G(k−1)). (3)

Under the relation of (3), each G(k) can be shifted to the
first position. Based on this property, the matrix representation
of TR decomposition can be formulated as

X<k> =←−X (k,2) = G(k)
(2)

�
G( �=k)

<2>

�T
(4)
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TABLE I

TENSOR OPERATIONS

which is an important conversion for updating each factor
tensor. The other efficient property is that, if the TR decom-
position of X is X = �(G(1),G(2), . . . ,G(n)), then the mode-k
multiplication of X can be formulated as

X ×k A = �(G(1),G(2), . . . ,G(k) ×2 A, . . . ,G(n)). (5)

B. Problem Formulation

In the real scene, HSI and MSI are third-order tensor data,
where the first two modes are spatial sizes of the image, and
the third mode is the spectral dimension. Thus, the given
LR-HSI and HR-MSI can be denoted as Y ∈ R

m×n×B and Z ∈
R

M×N×b, where m×n and M×N are spatial sizes of LR-HSI
and HR-MSI, respectively, and B and b are the number of
the spectral band of LR-HSI and HR-MSI, respectively. The
goal of HSI and MSI fusion is to estimate the HR-HSI X ∈
R

M×N×B from input LR-HSI and HR-MSI, where M > m,
N > n, and B > b. As the imaging object and the spectral
number between LR-HSI and HR-HSI are the same, then the
acquisition process of LR-HSI can be regarded as the spatially
downsampling from the HR-HSI, which can be formulated
as

Y = X ×1 U1 ×2 U2 +Ny (6)

where U1 ∈ R
m×M and U2 ∈ R

n×N are the degradation
operator of blurring and downsampling in spatial height and
width modes, respectively, and Ny ∈ R

m×n×B is the Gaussian
noise contained in LR-HSI. Analogously, the imaging object
and spatial sizes of HR-MSI and HR-HSI are the same; then,
HR-MSI can be formulated as the spectrally downsampling
from the HR-HSI, and thus, the following relationship is
satisfied:

Z = X ×3 U3 +Nz (7)

where U3 ∈ R
b×B is the spectral downsampling matrix of

the multispectral imaging sensor and Nz ∈ R
M×N×b is the

Gaussian noise contained in HR-MSI. Base on two degradation
models of (6) and (7), directly estimating the HR-HSI X can
be solved the following minimization problem:

min
X

1

2
�Y − X ×1 U1 ×2 U2�2F +

λ

2
�Z − X ×3 U3�2F (8)

where λ is the parameter used to balance two terms.

C. Factorization-Based Methods

Directly estimating the HR-HSI X from problem (8) is
an ill-posed inverse problem; the reason is that the number
of total measurements from Y and Z is much smaller than
that of the unknown variable. To solve the ill-posed fusion
problem, regularization is an effective tool by exploring the
prior knowledge about the desired HR-HSI X .

As HR-HSI has a strong correlation in spectral dimension,
i.e., each spectral signature of HR-HSI can be denoted as the
linear relationships of a small number of endmembers, low-
rank matrix factorization regularization on X(3) (the mode-
3 matricization of tensor X ) has been widely employed to
regularize the ill-posed fusion problem (8). Therefore, classical
matrix factorization [28], [30] was first proposed to estimate
the HR-HSI from a pair of LR-HSI and HR-MSI, which can
be formulated as

min
E,A

1

2
�Y(3) − EA(U1 ⊗ U2)

T �2F +
λ

2
�Z(3) − U3EA�2F (9)

where E ∈ R
B×r and A ∈ R

r×M N (r � B) are the basis matrix
and corresponding coefficient matrix, respectively. In fusion
problem (9), HR-HSI is factorized into two factors E and A,
i.e., X(3) = EA.

Notice that existing matrix factorization-based fusion meth-
ods only capture the correlation of HR-HSI in the spectral
dimension but ignore the spatial correlation. Moreover, due to
the third-order tensor nature of HR-HSI and some strong cor-
relations in different dimensions, tensor regularization-based
approaches have been suggested in the literature [34], [43],
[57], [62] and achieved some superior performance via com-
paring to the matrix factorization-based methods. Since classic
Tucker and CP ranks can depict the correlation in different
dimensions for high-order data, Tucker decomposition [34],
[57] and CP decomposition [43] methods are popular for fus-
ing the LR-HSI and HR-MSI. Recently, TR decomposition is a
novel tensor rank characterization, which decomposes a tensor
into a series of third-order factor tensors. The decomposition
form and relationship between tensor element and factor can
be found in (1). Based on the notation of TR decomposition,
the HR-HSI can be represented as TR decomposition as
follows:

X = �(G(1),G(2),G(3)) (10)

where G(1) ∈ R
r1×M×r2 , G(2) ∈ R

r2×N×r3 , and G(3) ∈ R
r3×B×r1

are three TR factors.
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Based on the efficient representation of TR decomposi-
tion, previous works widely employed TR decomposition
for characterizing the tensor rank under the context of HSI
processing [53], [60]. The superiority of TR decomposition
to approximate a high-order tensor is analyzed in [60]. Based
on the relationship of mode-k multiplication of X presented
in (5), the degradation process (6) can be rewritten as

Y = �(G(1) ×2 U1,G(2) ×2 U2,G(3))+Ny . (11)

Moreover, under the framework of TR decomposition,
the HR-MSI can be expressed as follows:

Z = �(G(1),G(2),G(3) ×2 U3)+Nz. (12)

By exploring the TR representation of X , the TR decom-
position was employed to fuse the LR-HSI and HR-MSI [55].
By combing (11) and (12), the model can be formulated as

min
G(1),G(2) ,G(3)

1

2
�Y −�(G(1) ×2 U1,G(2) ×2 U2,G(3))�2F
+λ

2
�Z −�(G(1),G(2),G(3) ×2 U3)�2F . (13)

Matrix/tensor decomposition-based approaches solve the
fusion problem by estimating the decomposition factors of
HR-HSI from the LR-HSI and HR-MSI. These methods
can take full advantage of the low-rank characteristic of
HR-HSI and transform the high-dimensional data into a low-
dimensional subspace [63], which can significantly reduce
redundancy and computational cost.

III. PROPOSED FACTOR SMOOTHED TENSOR

RING DECOMPOSITION METHOD

Since TR representation gives a compact and efficient
approximation for high-order tensor data HR-HSI, TR decom-
position model (13) can replace other matrix and tensor
representations for LR-HSI and HR-MSI fusion. However,
the original TR decomposition model (13) only considers the
high-correlation of HR-HSI in the spatial–spectral dimension.
Moreover, directly estimating the TR factors from model (13)
is an unstable problem. To obtain a stable solution and better
reconstruct the HR-HSI, additional prior knowledge about the
unknown variables should be taken into consideration.

A. Proposed Model

Besides the high-correlation property of HR-HSI,
the spatial–spectral piecewise smooth structure is also
an important prior for reconstructing the HR-HSI [64].
TR decomposition uses a set of latent tensor factors to
represent the HR-HSI; thus, additional spatial–spectral
piecewise smooth prior knowledge cannot be directly
designed to HR-HSI itself. To keep the original prior of
HR-HSI in the TR decomposition, the factor regularization
should be investigated in the TR decomposition framework
for LR-HSI and HR-MSI fusion

min
G(1),G(2) ,G(3)

1

2
�Y −�(G(1) ×2 U1,G(2) ×2 U2,G(3))�2F

+λ

2
�Z −�(G(1),G(2),G(3) ×2 U3)�2F + τ

3�
k=1

Fk(G(k)) (14)

where Fk(G(k)) is the regularization term for G(k) , which
is used to capture the spatial–spectral piecewise smooth
structure of HR-HSI. τ is the regularization parameter
employed to balance the fidelity term and the regularization
term.

To explore the property of tensor factor G(k) and design
effective regularization, we should establish the relationship
between the original HR-HSI and factor G(k). Based on the
matrix representation of TR decomposition, the TR decompo-
sition can be transformed as

X<k> = G(k)
(2)

�
G( �=k)

<2>

�T
, (k = 1, 2, 3). (15)

From the perspective of matrix factorization, it is easy to
understand that each column vector of X<k> can be regarded
as the representation of a linear combination of all column
of the factor G(k)

(2), indicating that all columns of G(k)
(2) are

a set of basis of the low-dimensional space of X<k>. Since
the HR-HSI has the piecewise smooth structure in two spatial
dimensions and one spectral dimension, each column of X<k>

is a continuous data. Based on the fact that continuous
bases can represent continuous data, hence, the constraint of
continuity of all columns of three factors G(k)

(2) (k = 1, 2, 3)
can preserve the piecewise smooth structure of X in two
spatial dimensions and one spectral dimension. To maintain
the factor continuity and regularize the TR decomposition
model, we introduce TV regularization [29], [65] to constrain
the TR factors. Moreover, the weighted TV and iteratively
updating the weights strategies are employed to promote the
continuity of each column of G(k)

(2). In summary, the pro-
posed FSTRD model for LR-HSI and HR-MSI fusion can be
formulated as

min
G(1),G(2),G(3)

1

2
�Y −�(G(1) ×2 U1,G(2) ×2 U2,G(3))�2F
+ λ

2
�Z −�(G(1),G(2),G(3) ×2 U3)�2F

+ τ

3�
k=1

�W (k) 	 (G(k) ×2 D)�1 (16)

where D is the first-order difference square matrix, whose
dimension is associated with the second dimension of
G(k), and W (k) ∈ R

rk×Ik×rk+1 is the nonnegative weighted
tensor.

The proposed model can thoroughly capture prior knowl-
edge of HR-HSI. The first two terms are the data-fitting terms,
imposing that the HR-HSI X should be able to represent
the input LR-HSI data Y and HR-MSI data Z according to
the spatial and spectral degraded model formulated in (11)
and (12). Moreover, the data-fitting terms also hide that the TR
representation is introduced to explore the strong correlation of
HR-HSI in all dimensions. The third term of factor smoothed
regularization, in particular, can help to preserve the piecewise
smooth structure and suppress the discontinuity caused by the
noise. It is worth noting that although He et al. [53] employed
TR decomposition with TV regularization for remote sensing
inpainting, this is very different from our work. He et al. [53]
introduced TR decomposition to capture the low-rank prior
of remote sensing image and directly applied TV regular-
ization to the image itself. In our work, we explore the
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degraded relationship between the HR-HSI with LR-HSI and
HR-MSI under the TR framework and further excavate the
smoothed prior for the TR factor rather than the image
itself.

B. Optimization

In this section, we design an efficient optimization algorithm
for estimating three TR factors from the proposed FSTRD
model (16). The optimization of the FSTRD model is not
jointly convex for three factors G(k) (k = 1, 2, 3), but it is
convex for each separable variable. Therefore, we employ the
PAM framework [66], [67] to solve it, which can be guaranteed
that the solution converges to a critical point of the objective
function.

Let f (G(1),G(2),G(3)) be the objective function (16); then,
we introduce proximal term for updating each factor under
the solved framework of PAM. Therefore, the optimization of
FSTRD model can be alternately solved by the following three
subproblems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(1),i+1 = arg min
G(1)

f (G(1),G(2),i ,G(3),i)

+ ρ

2
�G(1) − G(1),i�2F ,

G(2),i+1 = arg min
G(2)

f (G(1),i+1,G(2),G(3),i )

+ ρ

2
�G(2) − G(2),i�2F ,

G(3),i+1 = arg min
G(3)

f (G(1),i+1,G(2),i+1,G(3))

+ ρ

2
�G(3) − G(3),i�2F

(17)

where i , (ρ/2)� · �2F , and ρ are iteration number, prox-
imal term, and positive proximal parameter, respectively.
In the next, the detailed solution of each subproblem is
presented.

1) Optimization With Respect to G(1): The subproblem of
G(1) can be formulated as

min
G(1)

1

2
�Y −�(G(1) ×2 U1,G(2),i ×2 U2,G(3),i )�2F

+ λ

2
�Z −�(G(1),G(2),i ,G(3),i ×2 U3)�2F
+ τ�W (1) 	 (G(1) ×2 D)�1 + ρ

2
�G(1) − G(1),i�2F .

(18)

Because of the nonsmooth term of �1-norm, the close-
form solution of G(1) cannot be directly obtained. The
alternating direction method of multipliers (ADMM) algo-
rithm [68]–[71] can efficiently solve the nonsmooth problem.
First, we introduce one auxiliary variable R1; the uncon-
strained problem is equivalent to the following minimization
problem:

min
G(1),R1

1

2
�Y −�(G(1) ×2 U1,G(2),i ×2 U2,G(3),i )�2F

+λ

2
�Z −�(G(1),G(2),i ,G(3),i ×2 U3)�2F + τ�W (1) 	R1�1

+ρ

2
�G(1) − G(1),i�2F , s.t., R1 = G(1) ×2 D. (19)

The augmented Lagrangian function of the problem is
formulated as

Lβ(G(1),R1,M1)

= 1

2
�Y −�(G(1) ×2 U1,G(2),i ×2 U2,G(3),i )�2F
+λ

2
�Z −�(G(1),G(2),i ,G(3),i ×2 U3)�2F + τ�W (1) 	R1�1

+ρ

2
�G(1) − G(1),i�2F +

β

2

����R1 − G(1) ×2 D+M1

β

����
2

F

(20)

where M1 is the Lagrangian multiplier and β is a positive
penalty parameter. Then, the solution of G(1) can be achieved
by iteratively optimized the following subproblems:

a) R1-subproblem: The minimization of R1 is

min
R1

τ�W (1) 	R1�1 + β

2

����R1 − G(1) ×2 D+M1

β

����
2

F

(21)

which is a weighted �1-norm minimization, and the closed-
form solution is obtained by soft-threshold shrinkage operator

R1 = sign(J1) max



|J1| − τ

β
W (1), 0

�
(22)

where J1 = G(1) ×2 D − (M1/β), and sign(·) is symbolic
function. According to the reweighted strategy [72], the weight
coefficient is set as

W (1) = 1/(|J1| + eps) (23)

where eps is a positive small constant avoiding singularity.
b) G(1)-subproblem: The minimization of G(1) is

min
G(1)

1

2
�Y −�(G(1) ×2 U1,G(2),i ×2 U2,G(3),i )�2F

+λ

2
�Z −�(G(1),G(2),i ,G(3),i ×2 U3)�2F

+ρ

2
�G(1) − G(1),i�2F +

β

2

����R1 − G(1) ×2 D+M1

β

����
2

F

. (24)

Based on the matrix representation of TR decomposi-
tion (4), let P1 = ((G(2),i ×2 U2)G(3),i )T

<2> and P2 =
(G(2),i (G(3),i ×2 U3))

T
<2>, and the problem of G(1) can be

converted to the following minimization:
min
G(1)

(2)

1

2
�Y<1> − U1G(1)

(2)P1�2F +
λ

2
�Z<1> −G(1)

(2)P2�2F

+ρ

2
�G(1)

(2) −G(1),i
(2) �2F +

β

2

����R1(2) − DG(1)
(2) +

M1(2)

β

����
2

F

(25)

which is a quadratic problem, and the closed-form solution is
obtained by solving the following linear system:

UT
1 U1G(1)

(2)P1PT
1 + λG(1)

(2)P2PT
2 + ρG(1)

(2) + βDT DG(1)
(2)

= UT
1 Y<1>PT

1 + λZ<1>PT
2

+ ρG(1),i
(2) + βDT



R1(2) + M1(2)

β

�
. (26)

This liner system is a general Sylvester equation, which can
be efficiently solved by the conjugate gradient (CG) method.
Then, the factor G(1) is achieved by folding the solution G(1)

(2),
i.e., G(1) = Fold2(G

(1)
(2)).
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The update of Lagrangian multiplier M1 is formulated as
follows:

M1 ←M1 + β(R1 − G(1) ×2 D). (27)

By iteratively updating R1, G(1), and M1, we can obtain
the first factor G(1),i+1.

2) Optimization With Respect to G(2): The subproblem of
G(2) can be formulated as

min
G(2)

1

2
�Y −�(G(1),i+1 ×2 U1,G(2) ×2 U2,G(3),i )�2F

+λ

2
�Z −�(G(1),i+1,G(2),G(3),i ×2 U3)�2F

+τ�W (2) 	 (G(2) ×2 D)�1 + ρ

2
�G(2) − G(2),i�2F . (28)

The optimization of G(2) is similar to G(1). By using ADMM
algorithm, the update of each subproblem is formulated as
follows:

R2 = sign(J2) max



|J2| − τ

β
W (2), 0

�
(29)

UT
2 U2G(2)

(2)Q1QT
1 + λG(2)

(2)Q2QT
2 + ρG(2)

(2) + βDT DG(2)
(2)

= UT
2 Y<2>QT

1 + λZ<2>QT
2 + ρG(2),i

(2)

+ βDT



R2(2) + M2(2)

β

�
(30)

M2 ←M2 + β(R2 − G(2) ×2 D) (31)

where R2 and M2 are an auxiliary variable and the Lagrangian
multiplier, respectively. Moreover, the variables of above equa-
tions are defined as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
J2 = G(2) ×2 D−M2

β
W (2) = 1/(|J2| + eps)
Q1 = (G(3),i (G(1),i+1 ×2 U1))

T
<2>

Q2 = ((G(3),i ×2 U3)G(1),i+1)T
<2>.

(32)

3) Optimization With Respect to G(3): The subproblem of
G(3) can be formulated as

min
G(3)

1

2
�Y −�(G(1),i+1 ×2 U1,G(2),i+1 ×2 U2,G(3))�2F
+ λ

2
�Z −�(G(1),i+1,G(2),i+1,G(3) ×2 U3)�2F

+ τ�W (3) 	 (G(3) ×2 D)�1 + ρ

2
�G(3) − G(3),i�2F . (33)

We can also use ADMM to optimize factor G(3); the solution
of each subproblem can be iteratively updated as follows:

R3 = sign(J3) max



|J3| − τ

β
W (3), 0

�
(34)

λUT
3 U3G(3)

(2)T2TT
2 +G(2)

(2)T1TT
1 + ρG(3)

(2) + βDT DG(3)
(2)

= Y<3>TT
1 + λUT

3 Z<3>TT
2 + ρG(3),i

(2)

+ βDT



R3(2) + M3(2)

β

�
(35)

M3 ←M3 + β(R3 − G(3) ×2 D) (36)

Algorithm 1 PAM Algorithm for Solving Model (16)
Input: LR-HSI Y , HR-MSI Z , degraded operators U1, U2,

and U3, parameters λ, τ , ρ, β, TR rank r = [r1, r2, r3],
and imax.

1: Initialize: G(1),0, G(2),0, G(3),0, and i = 0.
2: while not coverged do
3: Initialize: G(1) = G(1),i and M1 = 0.
4: while not coverged do
5: Update R1 via (22).
6: Update G(1) via (26).
7: Update M1 via (27).
8: end while
9: Output: G(1),i+1.

10: Initialize: G(2) = G(2),i and M2 = 0.
11: while not coverged do
12: Update R2 via (29).
13: Update G(2) via (30).
14: Update M2 via (31).
15: end while
16: Output: G(2),i+1.
17: Initialize: G(3) = G(3),i and M3 = 0.
18: while not coverged do
19: Update R3 via (34).
20: Update G(3) via (35).
21: Update M3 via (36).
22: end while
23: Output: G(3),i+1.
24: Check ��(G)i+1−�(G)i�F

��(G)i�F
≤ ε and i < imax.

25: i = i + 1.
26: end while
Output: HR-HSI X = �(G(1),i+1,G(2),i+1,G(3),i+1).

where the variables are computed by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

J3 = G(3) ×2 D−M3

β
W (3) = 1/(|J3| + eps)
T1 = ((G(1),i+1 ×2 U1)(G(2),i+1 ×2 U2))

T
<2>

T2 = (G(1),i+1G(2),i+1)T
<2>.

(37)

Summarizing the optimization procedure of each factor
G(1), G(2), and G(3), we present the whole PAM algorithm
for solving model (16) in Algorithm 1. By introducing the
proximal operator in the alternating minimization framework,
the sequence {(G(1),i ,G(2),i ,G(3),i )} generated by Algorithm 1
converges to a critical point if it is bounded [67].

C. Computational Complexity

We analyze the computational complexity of the pro-
posed algorithm as follows. For achieving the HR-HSI X ∈
R

M×N×B , we assume that the TR rank is equal and set
as r1 = r2 = r3 = R. In the PAM framework, the TR
factors G(1), G(2), and G(3) are optimized by ADMM. For
the G(1) subproblem, the updates of auxiliary variable R1

and Lagrangian multiplier M1 are simple algebraic oper-
ation, and the total computation complexity is O(2M R2).
The main computational cost of solving the G(1) subproblem
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is the multiplication of the system matrix times a vector
on CG algorithm, and it can be implemented efficiently by
the matrix representation with complexity O(M2 R2 + M R4).
Thus, the computational complexity of each G(1) iteration is
O(KCG(M2 R2+M R4)+ 2M R2). Analogously, the computa-
tional costs of the G(2) and G(3) iterations are O(KCG(N2 R2+
N R4)+ 2N R2) and O(KCG(B2 R2 + B R4)+ 2B R2), respec-
tively. Therefore, the total computation complexity of each
iteration in Algorithm 1 is O(KADMM KCG((M2+N2+B2)R2+
(M+N+B)R4)+2KADMM(M+N+B)R2), where KADMM and
KCG are the iteration numbers of ADMM and CG algorithms,
respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, extensive datasets are used to illustrate
the performance of the proposed FSTRD method. Both
quantitative and visual results are employed to compare
the superiority of our method. We compare the result
with other DL-based state-of-the-art LR-HSI and HR-MSI
fusion methods, including factor smoothed matrix factoriza-
tion (Hysure) [29], fast fusion method (FUSE) [30], non-
local sparse tensor factorization (NLSTF) [38], coupled CP
factorization (STEREO) [43], coupled sparse tensor factor-
ization (CSTF) [57], low tensor train rank (LTTR)-based
method [49], region-based low-rank matrix decomposition
fusion (RLRMDF) method [35], convolutional neural net-
work (CNN)-based denoiser fusion (CNN-Fus) method [21],
deep spatiospectral attention CNN-based fusion method
(HSRnet) [23], and coupled TR factorization (CTRF) [55].
The model parameters of all compared methods are selected
according to the author’s suggestions in their paper and
released code to achieve the best results. The parameter
selection of the proposed method will give in the discussion.
Before the simulated process, the pixel value of HR-HSI is
scaled in [0, 1].

A. Simulated Data Experiment

1) Dataset: To thoroughly demonstrate the effectiveness of
the proposed method, we select four different datasets to test.
Two datasets are from computer version society, while another
two datasets are real remote sensing HSI. These four datasets
are often used as benchmark datasets. The detailed description
of experimental datasets is presented as follows.

1) The first is CAVE dataset,1 which contains 32 indoor
HSIs imaged by generalized assorted pixel camera in
real-world scenes. The size of each HSI is 512× 512×
31, where 512 × 512 is the number of spatial pixels,
and 31 is the number of spectral bands. The wavelength
of 31 spectral bands is from 400 to 700 nm with an
interval of 10 nm. Five different HSI scenes (Balloons,
Toy, Peppers, Flowers, and Painting) are selected as the
ground-truth datasets to test.

2) The second dataset is Harvard,2 which has 50 HSIs of
indoor and outdoor scenes under daylight illumination.

1http://www1.cs.columbia.edu/CAVE/databases/multispectral
2http://vision.seas.harvard.edu/hyperspec/download.html

TABLE II

QUANTITATIVE INDICES COMPARISON OF DIFFERENT METHODS UNDER
DIFFERENT NOISE CASES ON THE CAVE DATASET

The spatial and spectral sizes of each HSI in Harvard
datasets are 1040 × 1392 and 31, respectively, where
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Fig. 4. First row: reconstructed results of Toy under SNR = 15 dB on the CAVE dataset. The false color image is composed by bands (R: 27, G: 17, and
B: 11). Second row: corresponding error maps between the original and reconstructed images in averaging three bands. (a) LR-HSI. (b) HySure. (c) FUSE.
(d) NLSTF. (e) STEREO. (f) CSTF. (g) LTTR. (h) RLRMDF. (i) CNN-Fus. (j) HSRnet. (k) CTRF. (l) FSTRD. (m) Original.

31 spectral bands are ranged from 420 to 720 nm with an
incremental of 10 nm. We choose five HSIs (numbers are
img1, imgb8, imgc4, imgd3, and imgh0) with different
textures and details as the HR-HSI, and the spatial size
of 1024× 1024 is cropped.

3) The third dataset is the University of Pavia,3 which was
collected by using Reflective Optics System Imaging
Spectrometer (ROSIS). The original Pavia dataset has
115 spectral bands with a spatial size of 610 × 340.
After removing the low SNR bands and cropping the
subregion, we choose the up-left 256×256 spatial pixels
with 93 spectral bands as the HR-HSI.

4) The fourth dataset is Indian Pines,4 which was captured
by the NASA AVIRIS instrument over the Indian Pines
test site. The original image consists of 145×145 pixels
with the number of 220 spectral bands, and some bands
are seriously degraded by noise. In our experiment,
we extract these data to 128× 128× 184 in the whole
dimension as the ground truth.

2) Generation of LR-HSI and HR-MSI: To generate
LR-HSI, we first filter the HR-HSI by averaged blurring kernel
with a size of 9 × 9. Then, the LR-HSI is obtained by
downsampling the blurred image, and each pixel of LR-HSI is
selected from s×s pixels, where s is the downsampling factor.
In our experiments, the downsampling factors s of CAVE,
Harvard, Pavia, and Indian Pines datasets are set as 16, 32, 8,
and 4, respectively. The generation of HR-MSI is simulated
by downsampling the HR-HSI along the spectral mode using
the spectral response matrix. We employ the spectral response
matrix from Nikon D700 camera5 to generate HR-MSI (RGB
image) for CAVE and Harvard datasets. The Pavia dataset is
degraded by the IKONOS-like reflectance spectral response
filter [30] to simulate HR-MSI with four bands. The HR-MSI
with six bands of the Indian Pines dataset is generated by
choosing the spectral bands from the original HR-HSI [57].
When we obtain the LR-HSI and HR-MSI, the Gaussian noise
with the same signal-to-noise ratios (SNRs) is simultaneously
added to the LR-HSI and HR-MSI, where SNR is varied from
10 to 30 dB with an interval of 5 dB.

3) Quantitative Indices: To thoroughly evaluate the perfor-
mance of reconstructed HR-HSI from LR-HSI and HR-MSI,
we employ peak signal-to-noise ratio (PSNR), structure

3http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes

4https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
5https://www.maxmax.com/spectral_response.htm

similarity (SSIM) [73], erreur relative global adimensionnelle
de synthese (ERGAS) [64], spectral angle mapper (SAM) [74],
and cross correlation (CC) [44] as quantitative indices. These
indices contain the evaluation of spatial and spectral infor-
mation preservation. In general, the larger PSNR, SSIM, and
CC, and smaller SAM and ERGAS values indicate the better
result.

B. Experimental Results on Simulated Data

1) Results on CAVE Dataset: There are a total of 25 exper-
iments in the CAVE dataset since we choose five differ-
ent scenes with five different noise cases. A representative
case is used to compare the visual reconstructed result of
various methods. Fig. 4 shows the reconstructed result of
the Toy scene under SNR = 15 dB, and the false-color
image is composed of bands 27, 17, and 11. The first row
presents the reconstructed HR-HSI by different methods, and
the second row illustrates corresponding error maps (the
difference between original and reconstructed) obtained by
averaging three bands. To better present the visual comparison,
we enlarge a detailed region of reconstructed results. As we
can see from the result, although HySure can reconstruct
the HR-HSI, the contrast is destroyed compared with the
original image. The result obtained by FUSE exists noise
and is distorted. Tensor decomposition-based and DL-based
fusion methods achieve better results than matrix factorization-
based approaches, but the details cannot be better preserved,
as shown in the enlarged region. By incorporating the fac-
tor smoothed prior to the TR decomposition, the proposed
FSTRD achieves the best-reconstructed result, preserving most
of the details and removing high-intensity noises. From
error map results, the reconstructed HSR-HSI produced by
our FSTRD has fewer errors than that of other compared
methods.

Table II presents the quantitative indices comparison of
different methods under different noise cases on the CAVE
dataset. The values of all indices are obtained by averaging
the result of five different HSI scenes, and the best results
are highlighted in bold. From the table, matrix factorization-
based methods, HySure and FUSE, obtain poor results com-
pared with tensor-and DL-based approaches. NLSTF, LTTR,
RLRMDF, and CNN-Fus cannot obtain satisfactory results
in low SNR cases, which illustrates the sensitivity to noise.
DL-based method HSRnet obtains better results than other
compared methods in low SNR cases because it employs
extensive training data. It is clear to see that the proposed
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Fig. 5. First row: reconstructed results of imgb8 under SNR = 20 dB on the Harvard dataset. The false color image is composed by bands (R: 28, G: 16,
and B: 1). Second row: corresponding error maps between the original and reconstructed images in averaging three bands. (a) LR-HSI. (b) HySure. (c) FUSE.
(d) NLSTF. (e) STEREO. (f) CSTF. (g) LTTR. (h) RLRMDF. (i) CNN-Fus. (j) HSRnet. (k) CTRF. (l) FSTRD. (m) Original.

Fig. 6. Quantitative indices comparison of different methods under different noise cases on the Harvard dataset. (a) PSNR. (b) SSIM. (c) ERGAS. (d) SAM.
(e) CC.

Fig. 7. First row: reconstructed results of SNR = 25 dB on the Pavia dataset. The false color image is composed by bands (R: 82, G: 38, and B: 34). Second
row: corresponding error maps between the original and reconstructed images in averaging three bands. (a) LR-HSI. (b) HySure. (c) FUSE. (d) NLSTF.
(e) STEREO. (f) CSTF. (g) LTTR. (h) RLRMDF. (i) CNN-Fus. (j) CTRF. (k) FSTRD. (l) Original.

FSTRD achieves competitive results in low SNR cases and
outperforms all comparison methods in high SNR cases; the
reason is that our method explores the factor smoothness in
the framework of tensor decomposition.

2) Results on Harvard Dataset: The total number of exper-
imental cases in the Harvard dataset is the same as the
CAVE dataset; we also present a representative case to com-
pare the reconstructed result. Fig. 5 shows the reconstructed
imgb8 image with noise case SNR = 20 dB by the test
approaches. It can be seen that HySure destroys the image con-
trast, and FUSE, NLSTF, STEREO, RLRMDF, and CNN-Fus
cannot eliminate the noise in the images. From the results
of the enlarged region, we can find that HSRnet blurs the
image details, while the proposed FSTRD achieves the best
results in recovering the image details and restraining noise.
The second row of Fig. 5 shows that FSTRD obtains a smaller
error compared with other methods, which again demonstrates
the superiority of our method.

Fig. 6 illustrates the five average quantitative indices of
different methods in the conditions of different noise inten-
sities. Overall, it can be observed that the proposed FSTRD
outperforms other fusion approaches, with regard to the five

indices in all SNR cases. Meanwhile, compared with other
algorithms, HSRnet, CTRF, and the proposed FSTRD achieve
obvious improvement in low SNRs. This is mainly because
HSRnet uses many training data, while CTRF and our FSTRD
methods are based on efficient TR decomposition. Moreover,
FSTRD is much better than HSRnet and CTRF in all noise
cases due to the sparse prior of latent TR factor.

3) Results on Pavia and Indian Pines Datasets: Due to the
lack of a large number of training data in remote sensing
datasets, we abandon the comparison of the HSRnet method
on the next remote sensing datasets. However, it has been
demonstrated that the proposed method is competitive with the
HSRnet method in CAVE and Harvard datasets. Figs. 7 and 8
show the reconstructed results and residual images obtained
by different methods for Pavia and Indian Pines datasets with
SNR = 25 dB, respectively. HySure and STEREO are hard to
remove the noise in the Pavia dataset. Although other methods
can obtain satisfactory reconstructed results, the error maps are
shown that our FSTRD achieves a smaller error, indicating the
superiorities of preserving most of the details and removing
noise of the proposed method. For the results of the Indian
Pines dataset, FUSE cannot completely reconstruct the image
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Fig. 8. First row: reconstructed results of SNR = 25 dB on the Indian Pines dataset. The false color image is composed of bands (R: 167, G: 117, and
B: 93). Second row: corresponding error maps between the original and reconstructed images in averaging three bands. (a) LR-HSI. (b) HySure. (c) FUSE.
(d) NLSTF. (e) STEREO. (f) CSTF. (g) LTTR. (h) RLRMDF. (i) CNN-Fus. (j) CTRF. (k) FSTRD. (l) Original.

Fig. 9. Quantitative indices comparison of different methods under different noise cases on Pavia and Indian Pines datasets. (a) PSNR. (b) SSIM. (c) ERGAS.
(d) SAM. (e) CC.

detail and obtains artifact. The results of the first row present
that most of the methods can recover the HR-HSI, but the
enlarged region and error map illustrate the improvement of
our method.

Fig. 9 presents the quantitative results of different methods
by averaging the Pavia and Indian Pines datasets. Similar to
CAVE and Harvard datasets, FUSE, LTTR, and RLRMDF
obtain poor results in low SNRs, but satisfactory results are
achieved in high SNRs, illustrating that these methods are
sensitive to noise again. In both low and high SNRs cases,
FSTRD always achieves the best results in terms of five
quantitative indices. In summary, the above results thoroughly
illustrate that the proposed method can achieve the best result
for fusing the LR-HSI and HR-MSI, and our method is robust
to different datasets and noise intensities. Moreover, the com-
parisons of five different quantitative indices demonstrate that
the proposed method is better to reconstruct the image detail
and preserve spectral reflectance.

C. Real Data Experiment

To further demonstrate the effectiveness of the proposed
method, we implement a real LR-HSI and HR-MSI fusion
experiment. The LR-HSI is collected by the Hyperion sensor,
which is of the size 120 × 120 × 89. The HR-MSI with
13 bands is taken by the Sentinel-2A satellite. Four bands
with the 10-m spatial resolution are employed for the test,
and the spatial downsampling factor is 3, i.e., the size of
HR-MSI is 360 × 360 × 4. These four bands are extracted
from bands 2, 3, 4, and 8 with the central wavelengths being
490, 560, 665, and 842 nm, respectively. It is worth noting
that both the ground-truth spatial and spectral degradation
operators are unobtainable for real data. Thus, we estimate

the spatial and spectral degradation operators by using the
method suggested in [29]. For the parameters selection in real
data, we first employ the classical noise estimation algorithm
proposed in [75] to roughly estimate the noise intensity and
then set the parameters according to the empirical determina-
tion presented in the discussion. In our experiment, by using
the algorithm [75], the estimation of the noise intensity of
the LR-HSI is SNR = 32.75 dB. Since the estimated noise
intensity is close to SNR = 30 dB, we set parameters as
λ = 0.5, τ = 0.0001, and r = [6, 300, 6] for the real
data.

Fig. 10 shows the false color image of reconstructed results
for the real dataset. One can see from the results that all
comparison methods can obviously obtain a higher spatial
resolution compared with the original LR-HSI, as shown
in Fig. 10(a). However, FUSE, NLSTF, STEREO, CSTF,
LTTR, and CNN-Fus algorithms cannot completely recover
the image details and reconstruct the artifact as shown in the
enlarged region. Compared with the image structures of the
reference HR-MSI, the proposed method achieves the best
result, which indicates the better preservation of the image
structure.

To present the quantitative evaluation of different fusion
methods on the real dataset, we employ one blind image
quality assessment (BIQA) [76] for comparison. Table III
lists the nonreference index values of the real dataset, and
the results are obtained by averaging all bands. It can be
seen that HySure, FUSE, RLRMDF, and CNN-Fus methods
obtain better results. However, from the visual results shown
in Fig. 10, there are serious spectral distortion and artifacts
in their results. Combining the visual comparison and non-
reference image assessment index, we can observe that the
proposed method obtains a better result.
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Fig. 10. False color image of the reconstructed results for the real dataset. The false color image is composed by bands (R: 21, G: 15, and B: 1). (a) LR-HSI.
(b) HySure. (c) FUSE. (d) NLSTF. (e) STEREO. (f) CSTF. (g) LTTR. (h) RLRMDF. (i) CNN-Fus. (j) CTRF. (k) FSTRD. (l) HR-MSI.

TABLE III

BIQA COMPARISON OF THE REAL DATA

TABLE IV

QUANTITATIVE INDICES COMPARISON OF DIFFERENT METHODS

UNDER GAUSSIAN KERNEL ON THE PAVIA DATASET

D. Discussion

There are five regularization parameters λ, τ , r1, r2, and r3

and two algorithm parameters ρ and β in our FSTRD method.
For the algorithmic parameter, we empirically fix ρ = 1 and
β = 0.1 in all experiments. Next, we will analyze the influence
of regularization parameters on fusion performance. Moreover,
we further test the experiments by blurring the original image
with the Gaussian kernel to illustrate the robustness of the
proposed method for blurring kernel settings. The above
analyses are conducted on the Pavia dataset under the noise
levels SNR = 10 and 30 dB.

1) Analysis of λ and τ : Fig. 11 plots the PSNR value of
the reconstructed result as a function of parameters λ and τ
under two noise SNRs. As we can see from the results, when
the noise intensity is high, i.e., SNR = 10 dB, we should
choose the combination of larger τ and smaller λ, illustrating
the effectiveness of factor smoothed regularization in high
noise cases. On the contrary, smaller τ and larger λ should

TABLE V

QUANTITATIVE INDICES COMPARISON OF DIFFERENT METHODS UNDER

TWO SUPER-RESOLUTION FACTORS ON THE PAVIA DATASET

TABLE VI

QUANTITATIVE INDICES COMPARISON OF ABLATION

EXPERIMENTS ON THE PAVIA DATASET

be selected in low noise intensity cases. Hence, according to
the noise intensity, we empirically select λ and τ in the set of
{0.01, 0.5} and {0.0001, 0.01, 1}, respectively.
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TABLE VII

RUNNING TIME IN SECONDS OF DIFFERENT METHODS

Fig. 11. Sensitivity analysis of parameters λ and τ . (a) SNR = 10 dB.
(b) SNR = 30 dB.

Fig. 12. Sensitivity analysis of parameters TR rank. (a) SNR = 10 dB.
(b) SNR = 30 dB.

2) Analysis of TR Rank: The TR rank contains three para-
meters r = [r1, r2, r3], and the estimation of TR rank is still
an open problem. To reduce the parameter selection of TR
rank, we first set r1 = r3; thus, the TR rank r = [r1, r2, r1].
Fig. 12 presents the PSNR curves of reconstructed Pavia
dataset as a function of r1 and r2. As we can see from the
results, the smaller r1 can obtain better results in the low SNR
case, and in the high SNR, we should select larger r1. For
the parameter r2, we should choose larger r2 in all cases.
Therefore, we empirically select r1 and r2 in the range of
[2, 6] and [100, 300], respectively.

3) Analysis of Blurring Kernel: Table IV lists the recon-
structed result on the Pavia dataset under two SNRs by using
a Gaussian blurring kernel of size 7×7 with standard deviation
2. We can see that the proposed method can still achieve the
best performance compared with other methods, indicating the
robustness of our method for different blurring kernels.

4) Analysis of Super-Resolution Factors s: Table V reports
the quantitative indices comparison of two super-resolution
factors on the Pavia dataset with SNR = 20 dB. We can
observe that the proposed method still outperforms other
compared approaches as the super-resolution factor increases,
and the super-resolution factors cannot largely influence the
result.

Fig. 13. Relative change values (�X k+1 − X k�F /�X k�F ) versus the itera-
tion number of the FSTRD solver in the simulated Pavia dataset. (a) SNR =
10 dB. (b) SNR = 30 dB.

5) Effect of Three TR Factor Smoothed Regularization
Terms: To further illustrate the effectiveness of the proposed
factor smoothed regularization, we add ablation experiments
by disabling in turn spatial and spectral TR factor regulariza-
tions in the proposed method. We disable the two spatial and
one spectral smoothed regularizations (i.e., �W (1) 	 (G(1) ×2

D)�1, �W (2)	 (G(2)×2 D)�1, and �W (3)	 (G(3)×2 D)�1), two
spatial smoothed regularizations (i.e., �W (1) 	 (G(1) ×2 D)�1
and �W (2) 	 (G(2) ×2 D)�1), and the spectral smoothed regu-
larization (i.e., �W (3) 	 (G(3) ×2 D)�1), which are referred as
FSTRD w/o spa-spe, FSTRD w/o spa, and FSTRD w/o spe,
respectively. Table VI lists the quantitative indices comparison
of ablation experiments on the Pavia dataset by using the
proposed FSTRD and its variants. It is clear to see that FSTRD
outperforms its variants, and the three TR factor smoothed
components contribute significantly to the performance of the
proposed method.

6) Numerical Convergence: According to the existing the-
ory of the PAM algorithm, the proposed method can converge
to a critical point. Fig. 13 shows the numerical convergence of
the proposed method on the simulated Pavia dataset. From the
curves, we can see that the relative change value converges to
zero as the iteration number increases, indicating the numerical
convergence guarantee of the proposed method.

7) Computational Efficiency: Table VII reports the com-
putational time of different methods on the CAVE, Harvard,
Pavia, and Indian Pines datasets with SNR = 10 dB and
the real dataset. It is worth noting that the time results of
CAVE and Harvard datasets are obtained by averaging the
five different scenes. The running time results are recorded
in MATLAB R2020b using a desktop of 32-GB RAM, with
an Intel Core i9-10850K CPU@3.60 GHz. As can be seen
from the results, FUSE and CSTF take the shortest running
time. The proposed method needs relatively more computation
time than FUSE, STEREO, CSTF, and CTRF. The reason is
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that the PAM algorithm is relatively slow, but the stability and
convergence of the algorithm can be guaranteed. In general,
the proposed method can achieve better fusion results, and the
time cost is acceptable and competitive compared with other
methods.

V. CONCLUSION

In this article, we propose an effective FSTRD method to
reconstruct an HR-HSI from a pair of LR-HSI and HR-MSI
of the same scene. For better representing the spatial–spectral
correlation, the TR decomposition is designed to approximate
the HR-HSI. Based on the TR representation, the degradation
of LR-HSI and HR-MSI can be obtained by downsampling the
TR factor. Thus, the reconstruction of HR-HSI is transformed
to estimate the TR factor from the LR-HSI and HR-HSI.
Moreover, to further capture the spatial–spectral continuity
of HR-HSI, the smoothed regularization is introduced to
constrain the TR factor. The optimization of each TR factor
is based on an efficient PAM algorithm. Numerical results
demonstrate that the proposed method outperforms the state-
of-the-art methods, in particular, yielding reconstructed images
with higher quality.

Although the proposed FSTRD method can perform better
fusion results, there is still room for improvement. For exam-
ple, automatic regularization and TR rank parameters selection
should be overcome in the future, which is expected to improve
the application and practicality of the proposed method in
related fields. In addition, the organic combination of a TR
network with data-driven DL ideas is employed to improve
the fusion result.
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