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Abstract— Hyperspectral image (HSI) denoising has been1

regarded as an effective and economical preprocessing step in2

data subsequent applications. Recent nonlocal low-rank approx-3

imation on each full band patch group has demonstrated their4

superiority for HSI denoising. These methods, however, directly5

design low-rank regularization to the grouped patch image itself6

(i.e., original domain), which ignores the spatial information7

of the grouped patch image and cannot explore the potential8

structure. To address these issues, this article proposes a nonlocal9

group sparsifying transform learning (dubbed TLNLGS) method10

for HSI denoising. Motivated by the global spectral correlation11

in the HSI, we first impose a certain low-dimensional subspace12

hypothesis over the HSI to prevent the heavy computation13

burden with the spectral band increases, and then explore a14

discriminatively intrinsic nonlocal group sparse prior of the15

reduced image by the transform model. The learned group sparse16

prior can not only excavate the nonlocal self-similarity as recent17

nonlocal low-rank approximation methods but also preserve the18

local spatial smooth structure of the image. Moreover, compared19

with the fixed transform domain (e.g., gradient and discrete20

cosine transformation domains), the transform learning scheme21

can improve the sparse representation ability. An efficient block22

coordinate descent (BCD) algorithm is developed to solve the23

proposed model. Extensive experiments, including the simulated24

and real HSI datasets, indicate the superiority of the pro-25

posed TLNLGS method over the state-of-the-art HSI denoising26

approaches.27
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Index Terms— Block coordinate descent (BCD), group sparsity, 28

hyperspectral image (HSI) denoising, subspace representation, 29

transform learning. 30

I. INTRODUCTION 31

HYPERSPECTRAL imaging adopts an imaging spec- 32

trometer to acquire 3-D cube data with hundreds of 33

spectral bands covering the spectral region from ultraviolet to 34

infrared wavelengths. Due to the abundant spectral informa- 35

tion, hyperspectral image (HSI) has been extensively used in 36

practical applications, such as unmixing [1], recognition [2], 37

and classification [3]. However, influenced by the weather 38

condition, sensor instability, calibration error, and physical 39

mechanism, HSIs are usually polluted by various noise during 40

the imaging process [4], [5], which destroys the image vision 41

and constrains the advanced application tasks. Therefore, HSI 42

denoising is regarded as a meaningful preprocessing step in 43

remote sensing image processing. 44

In the past decades, numerous methods have been proposed 45

for HSI denoising, which can be roughly divided into three 46

categories: filtering-based [6], [7], model-based [8], [9], and 47

learning-based approaches [10], [11], [12]. It is worth not- 48

ing that the HSI denoising methods can also be classified 49

from other perspectives. Rasti et al. [13] gave a review of 50

the 2-D bandwise techniques to 3-D ones and varieties of 51

low-rank methods. Later, Rasti et al. [14] again presented a 52

study of the HSI denoising methods, which classifies the 53

denoising methods as full-rank, low-rank, and deep learning 54

(DL) techniques. In these categories, the model-based HSI 55

denoising methods have received significant attention in recent 56

years, which regard the restoration from noisy HSI as an 57

ill-posed inverse problem and explore the prior information 58

of HSI in the original domain or fixed domain to design 59

a calculable regularization model. The popular and effective 60

priors in HSI denoising can be generalized as local spatial 61

smooth structure, global spectral correlation, and nonlocal self- 62

similarity. The method of considering local spatial prior is 63

mainly to expand the conventional grayscale image denoising 64

and use the sparse model to HSI band-by-band, such as 65

wavelet [15], sparse representation [16], spatial total variation 66

(TV) [17], and spatio-spectral TV [18]. However, the global 67

spectral correlation which presents a significant advantage for 68

the denoising issue is ignored. 69

According to the linear mixture model [19], the global 70

spectral correlation is hidden in the HSI. Based on this impor- 71
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Fig. 1. Exploring nonlocal group sparsity under the transform learning scheme for the reduced image Z .

tant prior, Zhang et al. [8] first proposed a classical low-rank72

matrix recovery (LRMR) for HSI denoising. Following the73

idea of the LRMR method, the nonconvex low-rank matrix74

approximation methods were proposed for HSI denoising75

[20], [21]. Furthermore, extending the low-rank matrix approx-76

imation, the low-rank tensor decompositions, including par-77

allel factor analysis (PARAFAC) decomposition [4], Tucker78

decomposition [22], [23], and tensor singular value decom-79

position (t-SVD) [24], were introduced for HSI denois-80

ing. However, the spatial information is ignored in these81

methods. To capture the spatial smooth structure of HSI,82

He et al. [25] first introduced band-by-band TV regulariza-83

tion in the low-rank matrix recovery framework (LRTV) for84

HSI denoising. By extending the band-by-band TV and low-85

rank regularizations, the spatial–spectral TV regularization is86

the joint local low-rank regularization [26], low-rank Tucker87

decomposition [27], and t-SVD [28] for HSI denoising. The88

main drawback of these methods is that the spatial information89

of HSI is explored in the local domain, which may not achieve90

an optimal result.91

The exploration of global spectral correlation can effec-92

tively preserve the spectral information of HSI, while the93

nonlocal self-similarity is also an important intrinsic char-94

acteristic in HSI [29], [30], [31]. Nonlocal self-similarity95

illustrates that there are many repeated local patches in96

HSI, and thus, a strong correlation exists in the nonlo-97

cal dimension by grouping the similar patches. To take98

full advantage of these two priors, Peng et al. [9] first99

proposed a tensor dictionary learning (TDL) to jointly100

model the spectral and nonlocal self-similarity of HSI.101

Later, different tensor models, including Kronecker-basis-102

representation (KBR)-based tensor sparsity measure [32],103

hyper-Laplacian regularized unidirectional low-rank tensor104

recovery (LLRT) [33], weighted low-rank tensor recovery105

(WLRTR) [34], and tensor ring decomposition [35], have been106

proposed to boost the performance of TDL. Although these107

methods achieve satisfactory denoising results, the computa-108

tional burden is heavy as the number of spectra increases. To109

alleviate this problem, the subspace representation frame-110

work, which was proposed for HSI subspace identifica- 111

tion [36] and then was applied to HSI denoising [37], 112

is used to project the HSI into a low-dimensional subspace 113

and capture the spectral correlation [38]. The low-dimension 114

projected factor is restored by sparse regularization [39], 115

nonlocal self-similarity regularization [40], [41], [42], [43], 116

and deep convolutional neural network (CNN) image prior 117

[12], [43]. Especially, He et al. [41] proposed a unified sub- 118

space representation paradigm to integrate the spatial nonlocal 119

and global spectral low-rank property simultaneously. 120

Although the existing nonlocal self-similarity-based HSI 121

denoising methods that design appropriate low-rank approx- 122

imation on each full band patch group have yielded good 123

results, they still ignore some important problems. First, the 124

low-rank structure is an external and universal characteristic, 125

which cannot reveal the characteristic of transformation for 126

the grouped image. Second, these methods generally ignore 127

the local spatial smooth structure of the HSI. The reason 128

is that they designed a regularization term separately for 129

each prior knowledge. Thus, it needs to add more constraints 130

to the model if simultaneously capturing these prior knowl- 131

edges, which makes the model more complicated. Third, the 132

existing methods preserve the local spatial smoothness of 133

HSI by sparse modeling under certain transforms, such as 134

gradient domain (i.e., TV regularization [25], [44]), wavelet 135

domain [39], or redundant dictionaries [45]. However, the 136

imaging area of HSI is relatively broad, which makes the 137

spatial features and edges diverse. Thus, a certain domain 138

cannot completely depict each local feature block in the whole 139

image. 140

Mathematically, adaptive transform domains learned from 141

the data itself can better preserve the image structure [46]. 142

Moreover, several works have demonstrated that data-driven- 143

based transform learning can improve the representation 144

ability of local features and achieve promising results in 145

various image processing [47], [48], [49], [50]. Inspired by 146

the success of the transform learning framework, this arti- 147

cle proposes a novel nonlocal group sparsifying transform 148

learning (TLNLGS) method for HSI denoising, which can 149
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Fig. 2. Flowchart of subspace representation and TLNLGS method. It mainly includes three stages. (1) Global subspace learning. (2) Reduced image
reconstruction by TLNLGS. (3) HSI restoration from the subspace and reduced image.

effectively explore the characteristic of transformation for the150

grouped patch image and take full advantage of the key151

prior knowledge of HSI. Different from the previous work152

of directly applying the nonlocal self-similarity on HSI itself,153

we assume that the HSI lies in a relatively low-dimensional154

subspace to preserve the global spectral correlation of HSI155

and prevent the heavy computation burden with the spectral156

band increase, which has been widely used for HSI denoising157

[40], [41], inpainting [38], compressive reconstruction [51],158

and superresolution [52], [53] issues. Moreover, instead of159

directly using the nonlocal low-rank approximation on the160

reduced image as in previous methods, we explore a dis-161

criminatively intrinsic nonlocal group sparse prior to the162

reduced image using the transform model (see Fig. 1), which163

can effectively exploit the nonlocal self-similarity and local164

spatial smooth structure of the HSI without introducing more165

constraints. Furthermore, the multiple transform domains are166

adaptively designed for different grouped images, which is167

more effective than the shared and fixed transform domains on168

diverse grouped images (see Tables V and VI). The flowchart169

of the proposed TLNLGS method is shown in Fig. 2. The170

main novelties and contributions are summarized as follows.171

1) We explore a discriminatively intrinsic nonlocal group172

sparsity of the reduced image based on the transform173

learning scheme for HSI denoising, which can simul-174

taneously capture the nonlocal self-similarity and local175

smooth structure, and get rid of more constraints caused176

by more prior knowledge of HSI.177

2) We design multiple transform domains to model the178

different grouped images, which can improve the sparse179

representation ability of diverse spatial information 180

compared with the fixed transform or shared transform 181

domains. 182

3) We design an effective algorithm based on block coor- 183

dinate descent (BCD) for solving the proposed model 184

with convergence guarantee. The experiments on the 185

simulated and real HSIs show that our method achieves 186

better performances compared with the state-of-the-art 187

approaches. 188

The rest of this article is organized as follows. The nota- 189

tion and problem formulation are introduced in Section II. 190

Section III presents the proposed TLNLGS model. The opti- 191

mization procedure is developed in Section IV. Section V 192

illustrates the experimental results and discussions of our 193

method. Finally, Section VI concludes this article. 194

II. NOTATION AND PROBLEM FORMULATION 195

A. Notation 196

Tensors, matrices, vectors, and scalars are represented by 197

calligraphic letter (e.g., X ∈ R
I1×I2×···×In ), boldface capital let- 198

ters (e.g., X ∈ R
I×J ), boldface lowercase letter (e.g., x ∈ R

I ), 199

and lowercase or uppercase letters (e.g., i, I ∈ R), respectively. 200

X (i1, i2, . . . , in) or xi1,i2,...,in denotes an element value of X in 201

position (i1, i2, . . . , in). The mode-k matricization of a tensor 202

X ∈ R
I1×I2×···×In is represented as X(k) ∈ R

Ik ×I1,...,Ik−1 Ik+1 ,...,In . 203

In contrast, a tensor can be folded by the unfolding matrices 204

X(k) along the k-mode X = foldk(X(k)). The tube, row, and 205

column fibers of a 3-D tensor X ∈ R
I1×I2×I3 are vector 206

defined as xi1,i2,:, xi1,:,i3 , and x:,i2,i3 , respectively. Moreover, 207
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Fig. 3. (a) Washington dc Mall. (b) Unfolding matrix of (a) along spectral
dimension. (c) Distribution of the singular values of unfolding matrix (b).

the Frobenius norm of a tensor X is calculated as �X�F =208

(
�

i1,i2,...,in
(xi1,i2,...,in )

2)(1/2). The mode-k multiplication of X ∈209

R
I1×I2×···×In with a matrix U ∈ R

J×Ik is denoted by X × kU,210

and (X × kU)i1,...,ik−1, j,ik+1,...,in =�ik
xi1,i2,...,in u j,ik .211

B. Problem Formulation212

Let X ∈ R
M×N×B be a clean M × N HSI with B spectral213

bands, and Y ∈ R
M×N×B be the observed HSI degraded by214

the Gaussian noise, then the degradation model between these215

two HSIs can be formulated as216

Y = X + N (1)217

where N ∈ R
M×N×B denotes the Gaussian noise with zero218

mean and variance σ 2.219

The problem of HSI denoising is to restore the clean HSI X220

from the noisy HSI Y . However, directly estimating X from221

the degradation model (1) is an ill-posed problem, i.e., there222

exist multiple unexpected solutions. To solve this ill-posed223

problem, regularization is an effective method to explore the224

prior knowledge about the desired solution.225

Based on the regularization method, the restoration of clean226

HSI X can be solved by the following regularization model:227

arg min
X

1

2
�Y − X�2

F + λR(X ) (2)228

where the first term is the data fidelity term, R(X ) is the229

regularization term that explores the prior knowledge about230

the desired HSI, and λ is a regularization parameter used to231

balance the data fidelity term and regularization term.232

III. PROPOSED TLNLGS METHOD233

A. Global Spectral Correlation Via Subspace Representation234

From the perspective of unmixing, each spectral signature235

can be approximately represented by a linear combination of236

a small number of pure spectral endmembers, and the number237

of endmembers is much less than the spectral band [19],238

which means that the global spectral correlation exists in the239

HSI. To further illustrate the correlation of pixel values in240

the spectral dimension, we present the distribution of singular241

values of X(3) (unfolding matrix along spectral dimension)242

of the Washington dc Mall HSI in Fig. 3. From the curve,243

we can observe that the distributions of singular values of244

unfolding matrices decay rapidly, which again indicates the245

high correlation of HSI in the spectral dimension.246

To capture the global spectral correlation of HSI, the247

convex matrix nuclear norm [8], [25], nonconvex matrix rank248

Fig. 4. Global spectral correlation of HSI via subspace representation.

approximation [20], [21], and low-rank tensor decomposition 249

[27], [35] are extensively applied to design the regularization 250

R(X ) for HSI denoising. Recently, extending the representa- 251

tion of linear mixture model, i.e., HSI can be decomposed as 252

the product of endmember and abundance matrices, subspace 253

representation is widely presented to describe the global spec- 254

tral correlation. Based on subspace representation, the clean 255

HSI can be represented as 256

X = Z ×3 E (3) 257

where E ∈ R
B×r (r � B) is the basis matrix with orthogonal 258

columns, and Z ∈ R
M×N×r is the reduced image maintained 259

the similar characteristics with X . Fig. 4 presents the global 260

spectral correlation of HSI via subspace representation. 261

Using subspace decomposition, the clean HSI can be trans- 262

formed into a low-dimensional subspace to estimate, which 263

reduces the computation complexity. Moreover, subspace rep- 264

resentation has been proven to be an effective method for 265

handling HSI restoration [38], [41]. Based on the exploration 266

of subspace representation of HSI, the estimation of HSI in 267

the regularization model (2) can be formulated as 268

arg min
E,Z

1

2
�Y − Z ×3 E�2

F (4) 269

which transforms the estimation of the original HSI into two 270

representation factors. 271

B. Nonlocal Group Sparsity Prior of Reduced Image Under 272

Transform Learning 273

Although the restoration model (4) effectively explores the 274

spectral prior, it ignores the spatial prior information of HSI. 275

Previous works have been demonstrated that simultaneously 276

considering the spectral and spatial priors can achieve better 277

results [38], [41]. Since the reduced image Z inherits the 278

spatial characteristic of the original HSI as shown in Fig. 4, 279

the regularization of spatial prior of the original HSI X can be 280

transformed to regularize the reduced image Z . Therefore, the 281

denoising model (4) is extended to the following formulation: 282

arg min
E,Z

1

2
�Y − Z ×3 E�2

F + λR(Z) (5) 283

where R(Z) is the regularization term related to the spatial 284

prior depiction of reduced image Z . 285

TV regularization is usually designed to constrain the 286

reduced image [54]. However, TV regularization simply 287

explores the local spatial feature and ignores the nonlocal 288

image block information. The spatial nonlocal self-similarity 289
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prior of the reduced image is a powerful tool to maintain the290

spatial information, and the state-of-the-art denoising results291

have been achieved in [40], [41] through integrating such292

prior information. The principle of nonlocal similarity is that293

there are many repeated local patterns across the image. The294

step of grouping similar 3-D patches of reduced image Z is295

shown in the block matching part of Fig. 1. By grouping the296

similar patches together, the existing works mainly explored297

the correlation characteristic and used the nonlocal low-rank298

approximation to describe grouped image RiZ [40], [41].299

The low-rank approximation regularization of the grouped300

image can achieve satisfactory denoising results under the sub-301

space representation framework. However, the use of low-rank302

regularization alone ignores the local piecewise smooth struc-303

ture of the grouped image. It is well-known that HSI contains304

the local smooth structure, such that the reduced image has305

a similar feature [25], [38]. Since the grouped image is306

extracted from the reduced image, certain smooth structure307

is also inherited in the grouped image. To compensate the308

local smooth structure of grouped image RiZ , the low-rank309

approximation and sparse regularization in certain transforms310

or over dictionaries can be used to constrain RiZ . However,311

the intuition behind this idea is to add two regularization312

constraints into the model, which makes the model more313

complex and difficult to optimize. Moreover, early works used314

the sparse prior in a fixed transform domain, e.g., gradi-315

ent domain, wavelets’ domain, and discrete cosine transform316

(DCT), to exploit the local smooth structure. Due to the fact317

that the spatial structures of HSI are diverse, a certain domain318

cannot completely depict the local feature in the whole image.319

Although the data-driven-based synthesis dictionary learning is320

the effective adaptive sparse excavation tool, the sparse coding321

step is an NP-hard problem [55]. Furthermore, this combina-322

tion failed to reveal the characteristic of transformation of the323

grouped image since they directly designed regularizations on324

the original domain or fixed domain.325

To overcome the aforementioned drawbacks, we explore the326

discriminatively intrinsic nonlocal group sparse regularization327

of the reduced image under the transform learning scheme.328

Fig. 1 illustrates in detail the process of exploring nonlocal329

group sparsity under the transform learning model for the330

reduced image Z extracted from the real Washington dc331

Mall dataset. Instead of directly designing the regularization332

to the image patch ViZ ∈ R
p×p×r , where Vi is a linear333

operator extracting the i th pixel overlapping cube patch of Z ,334

we construct the grouped image as RiZ ∈ R
p2r×d . The335

operator Ri first divides the reduced image Z ∈ R
M×N×r as336

an overlapped patch tensor ViZ with the size of p × p × r ,337

then finds d similar patches for each i th key patch by block338

matching, and finally reshapes the nonlocal grouped patch339

as RiZ , where the column dimension is the nonlocal self-340

similarity mode. Therefore, for a given transform Wi for each341

grouped image, the group sparse prior of the reduced image342

is explored in the transform domain. The horizontal axis is343

the �2-norm value of each row for WiRiZ , and the vertical344

axis is the number of corresponding values in the statistical345

histogram. It is clear that most �2-norm values are zero or346

near zero, which indicates that there are many zero rows in347

WiRiZ . Therefore, the reduced image has the nonlocal group 348

sparse prior under the transform model. 349

In reality, the grouped image may be polluted by some 350

noise and even have some errors, leading to the deviation from 351

desirable group sparsity constraint. Therefore, the solution of 352

the data can be modeled as WiRiZ = Gi + Ni , where Gi 353

is the group sparse component, and Ni is the noise or error. 354

Based on this observation, the regularization term R(Z) can 355

be designed as 356

R(Z) =
�

i

�
1

2
�WiRiZ − Gi�2

F + τ�Gi�2,1

�
(6) 357

where τ is a regularization parameter, and �2,1 is used to 358

describe the group sparse prior of Gi , which is defined as 359

�R�2,1 =�k �R(:, k)�2. 360

It is worth noting that instead of using fixed transforms or 361

synthesis dictionaries, we use a learning-based transform Wi 362

to explore the group sparsity of RiZ . Moreover, since the 363

image scenes are diverse in whole HSI, different transforms 364

Wi are adaptively obtained from each grouped image by group 365

sparsifying transform learning. For the dimension of the group 366

sparsifying transform Wi , it usually can be overcomplete [48] 367

or square [47]. In our work, following the strategy in [47], 368

we set Wi as a square matrix and impose the orthogonal 369

properties (i.e., Wi ∈ R
p2r×p2r and WT

i Wi = I). Recently, 370

Xue et al. [56], [57] have applied the sparsity transform learn- 371

ing framework for multidimensional data recovery. However, 372

they mainly learn a basis transform matrix to capture the low- 373

rank property, i.e., the second dimension of the transform 374

matrix is much smaller than the first dimension. In contrast, 375

the proposed method learns a redundancy transform matrix to 376

explore the potential structure of the grouped image. 377

C. Proposed Model 378

Based on the above-mentioned analysis, it is natural for 379

us to incorporate the nonlocal group sparse term of reduced 380

image (6) into the denoising model (5), and then the proposed 381

model can be formulated as 382

min
E,Z,Wi ,Gi

1

2
�Y − Z ×3 E�2

F 383

+ λ
�

i

�
1

2
�WiRiZ − Gi�2

F + τ�Gi�2,1

�
384

s.t. ET E = I, WT
i Wi = I. (7) 385

The basic idea of the proposed model is that the nonlocal 386

self-similarity and local smooth structure of the reduced image 387

can be well-depicted by the group sparsity under the transform 388

learning framework; meanwhile, the subspace representation 389

captures the global spectral correlation of HSI. Under the 390

unified framework of subspace representation, synthesis-based 391

group sparse prior thoroughly excavates the potential charac- 392

teristics of the reduced image, yielding better HSI denoising 393

results. 394

Remark (The Group Sparsity of RiZ Under Transform 395

Matrix Wi ): It is well-known that HSI contains the local 396

smooth structure such that the reduced image Z has a similar 397

feature. Since all the patches of the grouped image are 398
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extracted from the reduced image, and the column of RiZ399

is stacked by vectoring the image patches, the grouped image400

RiZ also has a smooth structure along the column direction.401

Under the sparsifying transform matrix Wi , the matrix RiZ is402

sparse. Moreover, benefiting from the nonlocal self-similarity403

property, the grouped image RiZ has a strong correlation,404

indicating that each column of RiZ can be linearly represented405

by a small number of identical columns in WT
i . Therefore, the406

representation coefficient Gi should have the property of group407

sparsity.408

D. Difference Between TLNLGS and Related Methods409

In this section, we discuss the difference between TLNLGS410

and related methods in detail.411

1) Difference With Nonlocal Low-Rank-Based Methods:412

The representative global local factorization (GLF) [40] and413

nonlocal meets global (NGmeet) methods [41] used the sub-414

space representation to capture the global spectral of HSI and415

then designed the nonlocal prior to reconstruct the reduced416

image. However, they are very different from our work.417

These two methods ignored the important spatial piecewise418

smoothness of HSI. Moreover, they designed the low-rank419

approximation on the grouped patch image in the original420

domain, failing to further reveal the characteristic of trans-421

formation. In contrast, our method explores a discriminatively422

intrinsic nonlocal group sparse prior to the reduced image by423

the transform learning scheme, which can effectively exploit424

the low-rank and local spatial smooth structure of HSI.425

2) Difference With Group-Sparsity-Based Regularization426

Methods: The group sparse regularization was proposed427

in [58] for HSI denoising and then was improved in [59].428

Recently, combining the low-rank prior, the group sparsity429

regularized low-rank approximation methods were proposed430

for HSI denoising [54]. Again, these methods directly used431

group sparse regularization to constrain the reduced image in432

the original domain, wavelet domain, discrete cosine domain,433

or fixed gradient domain. The proposed method regularizes434

the nonlocal grouped image of the reduced image in the435

multiple transform domains by group sparse regularization,436

which reveals the discriminatively intrinsic prior to the reduced437

image. The experimental results show that the adaptive mul-438

tiple transform is indeed better than a fixed domain (see439

Table VI).440

IV. ALGORITHM441

It is generally difficult to directly solve the proposed model442

due to the coupling of these optimization variables. To address443

this, we are motivated to use the simple BCD algorithm444

framework for optimization. There are mainly four steps in445

each iteration: 1) global subspace E learning; 2) group sparsity446

Gi coding; 3) transform Wi learning; and 4) reduced image Z447

reconstruction. In the following, we present the optimization448

details of each step.449

A. Global Subspace E Learning450

For a fixed coupled variable Z , the subproblem of global451

subspace E learning in model (7) is presented as452

min
E

1

2
�Y − Z ×3 E�2

F , s.t. ET E = I. (8)453

According to [32], this subproblem has the closed-form 454

solution of E = UVT , where U and V are the left and right 455

singular vectors of Y(3)ZT
(3), respectively. However, optimiza- 456

tion is only suitable for the first iteration. The reason is that 457

the iterative refinement strategy is used in our algorithm, and 458

then the size of E is changed in the next iteration. Therefore, 459

following [41], the orthogonal subspace E can be learned from 460

singular value decomposition (SVD) of Y(3), which is a simple 461

operation. 462

B. Group Sparsity Gi Coding 463

Given the transform Wi and reduced image Z , we solve the 464

model (7) for group sparsity coding as 465

min
Gi

1

2
�WiRiZ − Gi�2

F + τ�Gi�2,1 (9) 466

which is a standard group sparsity coding problem. Let 467

WiRiZ = R, the closed-form solution of each row of Gi 468

is computed by the following thresholding operator: 469

Gi( j, :) =
⎧⎨
⎩

�R( j, :)�2 − τ

�R( j, :)�2
R( j, :), if �R( j, :)�2 > τ

0, otherwise.
470

(10) 471

C. Transform Wi Learning 472

The subproblem of model (7) with respect to transform Wi 473

can be learned by the following: 474

min
Wi

1

2
�WiRiZ − Gi�2

F , s.t. WT
i Wi = I. (11) 475

With the orthogonal constraint, the closed-form solution of 476

transform Wi can be achieved by Wi = UVT [32], where 477

RiZGT
i = USVT denotes the condensed SVD of RiZGT

i . 478

D. Reduced Image Z Reconstruction 479

With obtained E, Gi , and Wi , the reduced image Z recon- 480

struction problem reduces to 481

min
Z

1

2
�Y − Z ×3 E�2

F + λ
�

i

1

2
�WiRiZ − Gi�2

F . (12) 482

Since the orthogonal matrix preserves the Frobenius norm, 483

the following equation holds: 484

�WiRiZ − Gi�2
F = ��RiZ − WT

i Gi

��2

F
(13) 485

where WT
i Gi represents the restored patch via group sparsi- 486

fying approximation. 487

Based on (13), problem (12) is equivalent to 488

min
Z

1

2
�Y − Z ×3 E�2

F + λ
�

i

1

2

��RiZ − WT
i Gi

��2

F
(14) 489

which is a least-square problem with the closed-form solution 490

achieved by solving the normal linear equations’ system 491�
I + λ

�
i

RT
i Ri



Z = �Y ×3 ET

�+ λ
�

i

RT
i

�
WT

i Gi
�
. 492

(15) 493
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Algorithm 1 TLNLGS-Based HSI Denoising
Require: Noisy HSI Y , parameters λ, τ , γ = 2, and δ = 0.1.
1: Initialize: X (0) = Y (0) = Y , initializing Wi using 2-D

DCT, and estimating r (0) using HySime [36].
2: for k = 1 : K do
3: Update subspace r (k) = r (k−1) + γ ∗ (k − 1).
4: Calculate Y (k) = X (k−1) + δ(Y − X (k−1)).
5: Learn orthogonal subspace E and initialize reduce image

Z via SVD on Y(k)
(3) and fold3(ET Y(k)

(3)), respectively.
6: Group sparsity Gi coding for all i via (10).
7: Transform Wi learning for all i via (11).
8: Reduced image Z reconstruction via (15).
9: Denoised HSI reconstruction X (k) = Z ×3 E.

10: end for
Ensure: Denoised HSI X (k).

Here, RT
i : R

p2r×d → R
M×N×r represents the inverse494

operator of Ri , which aggregates all the restored patches into495

the image with the size of R
M×N×r .

�
i RT

i Ri counts the496

number of the patches in all the RiZ that contain the pixel.497

Based on the above iterations, we can obtain the entire algo-498

rithm for solving the model (7), as summarized in Algorithm 1.499

Since the rank (the number of column of E) of globe subspace500

E results in a balance between the oversmooth (lower rank)501

and detail preservation (higher rank), we refine the rank of502

E on Step 3 in Algorithm 1 to improve the denoising results.503

Moreover, the iteration regularization on Step 4 in Algorithm 1504

has also been demonstrated to boost the final results.505

E. Convergence Analysis506

In the following, we establish the convergence theorem of507

the proposed algorithm.508

Theorem 1: Given any finite initialization, the sequence509

generated by Algorithm 1 converges to a critical point of (7).510

Proof: Let f (E,Z, Wi , Gi) = (1/2)�Y − Z × 3E�2
F +511

λ
�

i{(1/2)�WiRiZ − Gi�2
F + τ�Gi�2,1} be the objective512

function in (7). We can easily verify that the objective f is513

block multiconvex, i.e., f is convex with respect to any block514

of variables while fixing the other blocks [60], and Lipschitz515

differentiable on any bounded set, i.e., ∇ f is Lipschitz con-516

tinuous. Note that the iterate for each block in Algorithm 1517

follows the exact minimization update scheme, i.e., [60, (1.3a)518

in page 1759]. Moreover, we can show that f is a Kurdyka–519

Łojasiewicz function (see [61, Definition 3]) via following520

the similar analysis in the proof of [61, Proposition 2] and521

[62, Corollary 1(c)]. Thus, the global convergence of the522

suggested Algorithm 1 (i.e., convergence regardless of initial523

point) can be established by [60, Theorem 2.8].524

F. Analysis of Computational Complexity525

The computational complexity of the proposed TLNLGS526

is given in the following. We assume that the size of input527

HSI Y is M × N × B , the subspace is r , the patch size is528

d × d , and the number of similar image patches is d . The529

orthogonal subspace E is learned via SVD on Y(k)
(3), and the530

complexity is O(MNB2). The computational complexity of 531

group sparsity coding is O(p4r2d), which is mainly from the 532

cost of forming matrix R. The transform update is first to form 533

matrix RiZGT
i , and then use the SVD; thus, the computational 534

complexity is O(p4r2d + p6r3). The reconstruction of reduced 535

image Z is a simple division, whose computational complexity 536

is O(MNBb + I p4r2d), where I is the number of grouped 537

images. Therefore, the total computation complexity of Algo- 538

rithm 1 is O(MNB2 + (p4r2d + p6r3)I + MNBb + I p4r2d). 539

Although the number of grouped image is large, the group 540

sparsity coding and transform update can be performed using 541

parallel computing. 542

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 543

In this section, several experiments are implemented to eval- 544

uate the effectiveness of the proposed TLNLGS on the simu- 545

lated and real datasets. Eleven state-of-the-art HSI denoising 546

methods have also been conducted for comparison, including 547

low-rank tensor approximation (LRTA) method [63], TDL [9], 548

low-rank tensor decomposition with TV regularization method 549

(LRTDTV) [27], parameter-free method (HyRes) [39], fast 550

HSI denoising method (FastHyDe) [38], GLF [40], KBR [32], 551

LLRT [33], WLRTR [34], disentangled spatiospectral deep 552

prior (DS2DP) method [12], and NGmeet [41]. Note that 553

these methods involve low-rank matrix approximation-based, 554

low-rank tensor decomposition-based, nonlocal self-similarity- 555

based, and DL-based state-of-the-art methods for a compre- 556

hensive comparison. The codes of the compared methods can 557

be downloaded from the authors’ homepage, and the hyper- 558

parameters in different experiments are set based on either 559

authors’ codes or suggestions in the reference articles. The 560

results are performed in MATLAB R2020b using a desktop of 561

32-GB RAM, with an Intel Core i9-10850K CPU at 3.60 GHz. 562

A. Experiments on HSI With Synthetic Noise 563

1) Experimental Setting: We choose two synthetic HSI 564

datasets. One is the Washington dc Mall dataset (WDC,1) 565

whose size is 256 × 256 × 191, with complex texture and 566

boundary information. The other one is the Pavia City Center 567

dataset (PaC,2), and the size of PaC is 200 × 200 × 80. 568

To simulate the noisy HSI data, seven different types of 569

Gaussian noises are added to the clean HSI data. The noise 570

settings are additive Gaussian noise N(0, σ 2I) with σ = 571

10, 30, 80, 100, and Gaussian noise N(0,�2) where � is 572

a diagonal matrix with diagonal elements sampled from a 573

uniform distribution U [10, 100] and U [30, 80]. The signal- 574

to-noise ratios (SNRs) associated with different Gaussian 575

noise cases on two datasets are listed in Table I. Moreover, 576

to demonstrate that the proposed method can be extended to 577

remove mixed noise, we add the mixtures of Gaussian noise, 578

impulse noise, dead line noise, and stripe noise to simulate the 579

noisy image. The standard deviation of the Gaussian noise and 580

percentages of impulse noise are uniformly sampled within the 581

1https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
2http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_

Scenes
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TABLE I

SNR OF SIMULATED NOISY HSI FOR THE GAUSSIAN NOISE CASES

Fig. 5. Denoised results of the WDC dataset in the case σ = 100. The false color image is composed by bands (R: 108, G: 25, and B: 11). (a) Original.
(b) Noisy. (c) LRTA. (d) TDL. (e) LRTDTV. (f) HyRes. (g) FastHyDe. (h) GLF. (i) KBR. (j) LLRT. (k) WLRTR. (l) DS2DP. (m) NGmeet. (n) TLNLGS.

Fig. 6. Denoised results of the WDC dataset in the case σ = [30, 80]. The false color image is composed by bands (R: 109, G: 95, and B: 160). (a) Original.
(b) Noisy. (c) LRTA. (d) TDL. (e) LRTDTV. (f) HyRes. (g) FastHyDe. (h) GLF. (i) KBR. (j) LLRT. (k) WLRTR. (l) DS2DP. (m) NGmeet. (n) TLNLGS.

range of U [10, 100] and U [0, 0.1], respectively. In addition,582

we severally select 10% of all the bands to add dead line583

and stripe noises. For the parameters’ setting of our method,584

we will give in the discussion part.585

2) Quantitative Indices: Five quantitative indices, includ-586

ing peak signal-to-noise ratio (PSNR), structure similarity587

(SSIM) [64], feature similarity (FSIM) [65], erreur relative588

globale adimensionnelle de synthese (ERGAS) [66], and spec-589

tral angle mapper (SAM), are used to evaluate the denoising590

performance of different methods. PSNR, SSIM, and FSIM591

are mainly used to measure the spatial information, while592

ERGAS and SAM measure the ability of spectral information593

preservation. The better restoration results are reflected by594

larger PSNR, SSIM and, FSIM values, and smaller ERGAS595

and SAM values. Moreover, time cost in seconds is given.596

3) Experimental Results on WDC Dataset: In terms of597

visual comparison, two representative denoised cases obtained598

by different methods are presented. Figs. 5 and 6 present 599

the restoration results of Gaussian noise with σ = 100 and 600

Gaussian noise with σ = [30, 80], respectively. Since LRTA 601

and LRTDTV directly use LRTA for the original image, the 602

performance is limited. Although the noise removal effects by 603

the nonlocal-based methods TDL, KBR, LLRT, and WLRTR 604

are improved, the restored spectral signatures are distorted. 605

The HyRes method can eliminate obvious noise, but the 606

detail is destroyed as presented in the enlarged box. Subspace 607

representation with the nonlocal self-similarity-based meth- 608

ods FastHyDe, GLF, and NGmeet obtain satisfactory results 609

compared with other methods, but the restoration results are 610

slightly smoothed in σ = 100. The DL-based method DS2DP 611

can eliminate most of the noises, but the noise removal 612

is incomplete as shown in the enlarged box. On the con- 613

trary, by exploring the group sparsity on the nonlocal image, 614

TLNLGS removes heavy Gaussian noises while preserving the 615
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TABLE II

QUANTITATIVE RESULTS OF COMPARISON METHODS ON THE WDC DATASET UNDER DIFFERENT NOISE CASES

image details. Using data whitening, HyRes, FastHyDe, GLF,616

and TLNLGS achieve better denoising results in the case of617

σ = [30, 80].618

In terms of quantitative comparison, the results of different619

methods on the WDC datasets under different noise cases620

are listed in Table II. We highlight the top two algorithms621

using two different colors (red and blue). From the results,622

our method considerably outperforms the compared methods623

in most indices and noise cases, which demonstrates that our624

method achieves a superior performance of preserving the625

image details while removing noise from the noisy images.626

DS2DP obtains the best result in the case of mixed noise since 627

it is mainly designed for mixed noise removal. Specifically, 628

compared with the outstanding noise removal methods GLF 629

and NGmeet, the proposed method achieves a substantial 630

improvement in the cases of mixed noise, indicating the 631

potency of exploring the nonlocal group sparsity. For compu- 632

tational efficiency, the LRTA, HyRes, and FastHyDe methods 633

are obviously superior to other methods. However, compared 634

with the nonlocal-based methods (KBR, LLRT, and WLRTR) 635

and the DL-based approach (DS2DP), the time cost of the 636

proposed method is advantageous. 637
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Fig. 7. Denoised results of the PaC dataset in the case σ = 100. The false color image is composed by bands (R: 79, G: 40, and B: 2). (a) Original.
(b) Noisy. (c) LRTA. (d) TDL. (e) LRTDTV. (f) HyRes. (g) FastHyDe. (h) GLF. (i) KBR. (j) LLRT. (k) WLRTR. (l) DS2DP. (m) NGmeet. (n) TLNLGS.

Fig. 8. Denoised results of the PaC dataset in the case σ = [30, 80]. The false color image is composed by bands (R: 78, G: 35, and B: 21). (a) Original.
(b) Noisy. (c) LRTA. (d) TDL. (e) LRTDTV. (f) HyRes. (g) FastHyDe. (h) GLF. (i) KBR. (j) LLRT. (k) WLRTR. (l) DS2DP. (m) NGmeet. (n) TLNLGS.

4) Experimental Results on PaC Dataset: Figs. 7 and 8638

show some visualization results of our method in comparison639

to other existing HSI denoising methods for removing noise in640

the PaC dataset. LRTA and TDL cannot completely remove the641

noises and obtain artifacts. From the enlarged results shown642

on the left-bottom, it can be seen that the textural details643

are very well restored with NGmeet and TLNLGS, while644

most approaches suffer from serious missing image details645

and incomplete noise removal. FastHyDe and GLF effectively646

remove noise, but with blurred details. Although NGmeet647

obtains satisfactory result in Fig. 7, incomplete noise removal648

also exists in Fig. 8. On the whole, our method can use the649

potential structure sparsity as a prior to remove the noise and650

preserve the image details.651

Table III shows quantitative metrics about ours and other652

methods under different noise intensities on the PaC dataset.653

It can be observed that the proposed TLNLGS outperforms654

the comparison methods in most cases, which is similar to655

the WDC dataset. Moreover, from the result of averaging656

different noise cases, the proposed method also achieves657

better quantitative results. For the running time, HyRes and658

LRTA cost shorter times than other methods. The proposed659

method has a tradeoff between the performance and execution660

time.661

Fig. 9. PSNR and SSIM values of each band in the case of σ = 100 on the
WDC and PaC datasets. (a) WDC dataset. (b) PaC dataset.

Fig. 9 presents the PSNR and SSIM values of each band in 662

the case of σ = 100 on the WDC and PaC datasets. Clearly, 663

the PSNR and SSIM values of LRTA are lower than one 664

of the other denoising methods since they ignore the spatial 665

prior information. In contrast, the proposed method achieves 666
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TABLE III

QUANTITATIVE RESULTS OF COMPARISON METHODS ON THE PAC DATASET UNDER DIFFERENT NOISE CASES

better or more competitive results compared with the existing667

approaches, indicating the superiority of our method.668

B. Experiments on HSI With Real Noise669

We also illustrate the effectiveness of the proposed method670

by comparing it against other approaches on two HSIs with671

real noise. As real-world noisy HSIs generally miss the associ-672

ated noise-free ground truth, we only visually and qualitatively673

evaluate the denoising performance on real data.674

1) Real Noisy HSI Datasets: Two representative real-world675

data are selected for real noisy HSI datasets, including the air-676

borne visible/infrared imaging spectrometer (AVIRIS) Indian677

Pines dataset and the GaoFen-5 (GF-5) dataset. The spatial 678

size of the Indian Pines dataset is 145 × 145, and the spectral 679

dimension is 220. Due to the influence of atmosphere (water 680

absorption), the Indian Pines dataset is seriously degraded by 681

noise [as shown in Fig. 10(a)]. The spectral band of the origi- 682

nal GF-5 is 330, of which some bands are missing information. 683

Therefore, a sub-HSI with the size of 256 × 256 × 155 is 684

chosen for experiments. The GF-5 dataset is degraded by 685

mixed noise as shown in Fig. 12(a). 686

2) Experimental Results on Indian Pines Dataset: Fig. 10 687

shows the false color restoration results of the real Indian Pines 688

dataset. As shown in Fig. 10(a), noise seriously influences 689
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Fig. 10. Denoised results of the real Indian Pines dataset. The false color image is composed by bands (R: 220, G: 150, and B: 109). (a) Noisy. (b) LRTA.
(c) TDL. (d) LRTDTV. (e) HyRes. (f) FastHyDe. (g) GLF. (h) KBR. (i) LLRT. (j) WLRTR. (k) DS2DP. (l) NGmeet. (m) TLNLGS.

Fig. 11. Horizontal mean profiles of band 150 for the real Indian Pines dataset. (a) Noisy. (b) LRTA. (c) TDL. (d) LRTDTV. (e) HyRes. (f) FastHyDe.
(g) GLF. (h) KBR. (i) LLRT. (j) WLRTR. (k) DS2DP. (l) NGmeet. (m) TLNLGS.

Fig. 12. Denoised results of the real GF-5 dataset. The false color image is composed by bands (R: 96, G: 151, and B: 154). (a) Noisy. (b) LRTA. (c) TDL.
(d) LRTDTV. (e) HyRes. (f) FastHyDe. (g) GLF. (h) KBR. (i) LLRT. (j) WLRTR. (k) DS2DP. (l) NGmeet. (m) TLNLGS.

the image quality. LRTA, TDL, and LLRT can obtain satis-690

factory denoising results in simulated noise, but they fail to691

remove high-intensity noise in real data. Although LRTDTV692

removes the noise thoroughly by the combination of TV693

regularization and LRTA, the restored result is oversmoothed.694

HyRes, FastHyDe, and GLF can remove obvious noise. KBR,695

WLRTR, and NGmeet effectively remove the noise and pre-696

serve most of the image details. However, since they ignore the697

sparse prior of the nonlocal image, some stripe artifacts remain698

in the denoised results as shown in the enlarged box. DS2DP699

and our TLNLGS eliminate all noises as well as achieve better700

visual quality.701

Fig. 11 presents the mean profiles of band 150. From the 702

results, there are several impulses in the results of LRTA, TDL, 703

HyRes, FastHyDe, GLF, and LLRT due to incomplete noise 704

removal. Since the results of KBR, WLRTR, and NGmeet 705

generate stripe artifacts, the mean profiles occur with tiny fluc- 706

tuations. Moreover, the result of LRTDTV is oversmoothed. 707

In contrast, DS2DP and the proposed method yield better 708

illustration. 709

3) Experimental Results on GF-5 Dataset: Fig. 12 shows 710

the denoising results on the real GF-5 dataset. As shown in 711

the green enlarged close-ups, the results achieved by LRTA, 712

TDL, and HyRes contain visible noise. LRTDTV, FastHyDe, 713
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Fig. 13. Vertical mean profiles of band 154 for the real GF-5 dataset. (a) Noisy. (b) LRTA. (c) TDL. (d) LRTDTV. (e) HyRes. (f) FastHyDe. (g) GLF.
(h) KBR. (i) LLRT. (j) WLRTR. (k) DS2DP. (l) NGmeet. (m) TLNLGS .

TABLE IV

RUNNING TIME IN SECONDS OF THE TESTING METHODS FOR REAL DATASETS

GLF, KBR, WLRTR, and DS2DP obtain satisfactory visual714

effect, removing the noise and preserving the image details,715

but the stripe noise exists in the enlarged box. Although LLRT716

removes the noise completely, the spectral information is717

distorted. NGmeet removes the noise by smoothing the image718

detail. The proposed TLNLGS method effectively removes the719

mixture noise and preserves the image structures.720

Fig. 13 shows the mean profiles of band 154 on the GF-5721

dataset. Since LRTA and TDL cannot remove noise, the722

mean profiles obtained by these methods are similar to the723

noisy band. Due to the effects of stripes, there are several724

fluctuations in the curves of the LRTDTV, HyRes, FastHyDe,725

GLF, WLRTR, and DS2DP methods. After denoising, these726

kinds of fluctuations can be eliminated by other methods,727

indicating better denoising performances. In summary, our728

method can effectively remove noise and achieve competitive729

denoising results compared with the state-of-the-art methods.730

Table IV reports the running time of testing methods for731

these two real datasets. LRTA, FastHyRes, and HyRes have732

obvious speed advantages than other methods. However, the733

proposed method achieves better denoising results than the734

LRTA, TDL, HyRes, and FastHyDe methods with a low735

computational cost. Therefore, the proposed method has a736

tradeoff between the results and time cost.737

C. Discussion738

In this section, we first test the ablation study to illustrate739

the effectiveness of exploring the nonlocal group sparsity740

of reduced image under transform learning. Second, fixed741

transform is used to demonstrate the necessity of adaptive742

transform. Third, we provide the sensitivity analysis of several743

parameters adopted in Algorithm 1, and then discuss how744

they can be appropriately tuned in the experiment. Fourth,745

comparison with the DL-based methods is presented to show746

the competitiveness of the proposed method. Finally, the747

TABLE V

QUANTITATIVE RESULT COMPARISONS OF ABLATION

STUDY ON THE PAC DATASET

numerical convergence is devolved. These discussions are 748

based on the PaC dataset under noise intensities σ = 10, 100, 749

[10, 100]. 750

1) Ablation Study: To further analyze the superiority of 751

imposing group sparse regularization and different trans- 752

forms Wi , we conduct an ablation study by replacing group 753

sparse regularization as the weighted nuclear norm and sparse 754

regularization, respectively, as well as using a unified trans- 755

form W. The substitutes of the weighted nuclear norm, sparse 756

regularization, and unified transform are denoted as TLNLNN, 757

TLNLSR, and TLNLUT, respectively. Table V lists the quan- 758

titative result comparisons of the ablation study on the PaC 759

dataset under three different noise variances. Since TLNLSR 760

ignores high strong correlation of the grouped image, the 761

results are lower than TLNLNN which considers the nonlocal 762

self-similarity of the reduced image. Although TLNLUT uses 763
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Fig. 14. Denoised results of the PaC dataset in the case σ = [10, 100]. The false color image is composed by bands (R: 68, G: 39, and B: 1). (a) Original.
(b) Noisy. (c) TLNLNN. (d) TLNLSR. (e) TLNLUT. (f) TLNLGS.

TABLE VI

QUANTITATIVE RESULT COMPARISONS OF FIXED
DCT TRANSFORM ON THE PAC DATASET

unified transform W, it simultaneously explores the nonlocal764

self-similarity and local smooth structure of the reduced image.765

Therefore, TLNLUT achieves better results than TLNLNN766

and TLNLSR in most cases. Compared with the variants,767

TLNLGS obtains the best quantitative results. Fig. 14 presents768

the visual comparison of Gaussian noise with σ = [10, 100].769

From the results, we can observe that the proposed TLNLGS770

achieves obvious improvement in terms of removing noises771

and preserving the image details. In summary, the quantitative772

and qualitative results demonstrate that these two important773

components contribute significantly to the superiority of the774

proposed method.775

2) Necessity of Adaptive Transform: In the proposed model,776

the adaptive transform matrices are learned from the data itself777

to explore the group sparsity of grouped images. To illustrate778

the necessity of adaptive transforms, we use fixed DCT as the779

transform matrix (denoted as DCTNLGS method) to replace780

the adaptive transform. Table VI lists the quantitative result781

comparisons on the PaC dataset under three different noise782

variances. From the results, we can find that the strategy of783

adaptive transform is significantly better than that of the fixed784

transform matrix.785

3) Sensitivity Analysis of Parameter λ: The regularization786

parameter λ is used to balance the fidelity term and the787

regularization term. Fig. 15(a) shows the change in PSNR788

value with different λ values in the PaC dataset under three789

noise cases. It can be observed that the denoising results790

gradually become better with the increase in λ and tend to791

stabilize when λ increased to 0.1. Therefore, we empirically792

set λ = 0.1 in all the experiments.793

4) Sensitivity Analysis of Parameter τ : The parameter τ794

is used to constrain group sparsity regularization, which is795

an important parameter. In our work, we set the parameter796

Fig. 15. Sensitivity analysis of all the parameters involved in the proposed
model. (a) Parameter λ. (b) Parameter τ = σθ . (c) Patch size p. (d) Patch
number d.

τ as σθ , where σ is the noise level and changes during 797

iteration [41], and θ is the tuning parameter. Fig. 15(b) 798

presents the PSNR change curve with different parameter θ . 799

It is observed that θ needs to be set as lower values on 800

low noise variance, but when the noise variance increases, 801

a larger θ should be selected. From the sensitivity analysis, 802

we empirically set θ ∈ [20, 100] in all the experiments. 803

5) Sensitivity Analysis of Patch Size p: The proposed 804

method has been considered the nonlocal self-similarity of 805

the reduced image, and thus, the patch size also affects the 806

denoising results. The sensitivity analysis of the patch size b is 807

presented in Fig. 15(c). It is observed that this parameter needs 808

to be carefully selected, and satisfactory results in all the cases 809

are achieved when p is set as 4. Therefore, we empirically set 810

p = 4 in all the experiments. 811

6) Sensitivity Analysis of Patch Number d: Fig. 15(d) plots 812

the sensitivity analysis of patch number d , and it is obvious 813

that the highest PSNRs in three cases are achieved by the 814

proposed method when the patch number increased to 150, 815

which inspired us to fix d = 150 in all the experiments. 816

Through the sensitivity analysis of several parameters, 817

we set parameters λ = 0.1, p = 4, and d = 150 in all 818

the experiments. Since the parameter τ = σθ (where σ 819

is estimated in each iteration [41]) is a threshold value for 820
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Fig. 16. Relative change values (�X k+1 − X k�F /�X k�F ) versus iteration number of the proposed method. (a) σ = 10. (b) σ = 100. (c) σ = [10, 100].

TABLE VII

SETTING OF PARAMETER θ OF THE PROPOSED METHOD

IN SIMULATED EXPERIMENTS

TABLE VIII

QUANTITATIVE RESULT COMPARISONS BETWEEN THE PROPOSED

TLNLGS WITH TWO SUPERVISED DL-BASED
METHODS ON THE WDC DATASET

group sparsity coding, it needs to be selected according to the821

noise intensity. In the simulated experiments, the parameter θ822

is listed in Table VII. Empirically, the Gaussian noise with823

different standard deviation σ for each band in real dataset.824

Therefore, when the dataset (e.g., Indian Pines) is obviously825

degraded by Gaussian noise, we set the parameters as λ = 0.1,826

p = 4, d = 150, and θ = 100. For the GF-5 dataset, it is827

degraded by mixed noise, and thus, the parameters are set as828

λ = 0.1, p = 4, d = 150, and θ = 20.829

7) Comparison With Supervised Deep Learning-Based830

Methods: Supervised DL has also been extensively presented831

to HSI denoising [67], [68], [69], [70]. To show the competi-832

tiveness of the proposed method with the supervised DL meth-833

ods, two state-of-the-art methods 3-D quasi-recurrent neural834

network (QRNN3D) [69] and trainable spectral-spatial sparse835

coding (T3SC) [70] are chosen for comparison. For a fair com-836

parison, the experimental settings including the ground-truth837

WDC data (200 × 200 × 191) and Gaussian noise intensities838

(σ = 5, 25, 50, 100, [0, 95]) keep the same as that of T3SC 839

in their article. The quantitative result comparison between 840

the proposed TLNLGS with two supervised DL methods is 841

listed in Table VIII. It can be seen that the proposed TLNLGS 842

outperforms the DL-based methods in terms of PSNR and 843

FSIM, and the T3SC method obtains better SAM results. 844

Therefore, compared with the supervised DL methods, our 845

method can also achieve competitive results. 846

8) Numerical Convergence: The solved BCD algorithm can 847

converge to a critical point. Fig. 16 shows the relative change 848

value versus the iteration number of the proposed method on 849

the PaC dataset. From the results, we can observe that the 850

relative change value monotonically decreases and gradually 851

tends to be zeros as the iteration number increases, indicating 852

the numerical convergence of the proposed method. 853

VI. CONCLUSION 854

In this article, we proposed a novel HSI denoising method 855

using the transform learning scheme with subspace repre- 856

sentation. The group sparsifying transform learning is used 857

to explore a discriminatively intrinsic nonlocal prior on the 858

reduced image, which can not only reflect the nonlocal 859

self-similarity and local spatial smooth structure of HSI with- 860

out adding more constraints but also improve the ability of 861

adaptive sparse representation than the fixed transform domain. 862

Moreover, to capture the global spectral correlation of HSI and 863

avoid the heavy computation burden with the spectral band 864

increase, subspace representation is introduced to project the 865

HSI onto a relatively low-dimensional subspace. The proposed 866

method overcomes the barriers of the existing HSI denoising 867

approaches that directly designed different regularizations on 868

the original domain or fixed domain, which cannot explore the 869

characteristic of transformation. The experiments on the simu- 870

lated and real HSI noisy cases demonstrated the superiority of 871

the proposed method via comparing with the state-of-the-art 872

approaches. 873

It should be pointed out that the suggested idea on the 874

exploration of nonlocal group sparsity can also be adapted 875

to other HSI tasks such as superresolution and compressive 876

reconstruction. Another interesting future direction is to adopt 877

the DL methods to learn the transform matrix [71]. 878
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