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Abstract— Hyperspectral image (HSI) denoising has been
regarded as an effective and economical preprocessing step in
data subsequent applications. Recent nonlocal low-rank approx-
imation on each full band patch group has demonstrated their
superiority for HSI denoising. These methods, however, directly
design low-rank regularization to the grouped patch image itself
(i.e., original domain), which ignores the spatial information
of the grouped patch image and cannot explore the potential
structure. To address these issues, this article proposes a nonlocal
group sparsifying transform learning (dubbed TLNLGS) method
for HSI denoising. Motivated by the global spectral correlation
in the HSI, we first impose a certain low-dimensional subspace
hypothesis over the HSI to prevent the heavy computation
burden with the spectral band increases, and then explore a
discriminatively intrinsic nonlocal group sparse prior of the
reduced image by the transform model. The learned group sparse
prior can not only excavate the nonlocal self-similarity as recent
nonlocal low-rank approximation methods but also preserve the
local spatial smooth structure of the image. Moreover, compared
with the fixed transform domain (e.g., gradient and discrete
cosine transformation domains), the transform learning scheme
can improve the sparse representation ability. An efficient block
coordinate descent (BCD) algorithm is developed to solve the
proposed model. Extensive experiments, including the simulated
and real HSI datasets, indicate the superiority of the pro-
posed TLNLGS method over the state-of-the-art HSI denoising
approaches.
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I. INTRODUCTION

YPERSPECTRAL imaging adopts an imaging spec-

trometer to acquire 3-D cube data with hundreds of
spectral bands covering the spectral region from ultraviolet to
infrared wavelengths. Due to the abundant spectral informa-
tion, hyperspectral image (HSI) has been extensively used in
practical applications, such as unmixing [1], recognition [2],
and classification [3]. However, influenced by the weather
condition, sensor instability, calibration error, and physical
mechanism, HSIs are usually polluted by various noise during
the imaging process [4], [5], which destroys the image vision
and constrains the advanced application tasks. Therefore, HSI
denoising is regarded as a meaningful preprocessing step in
remote sensing image processing.

In the past decades, numerous methods have been proposed
for HSI denoising, which can be roughly divided into three
categories: filtering-based [6], [7], model-based [8], [9], and
learning-based approaches [10], [11], [12]. It is worth not-
ing that the HSI denoising methods can also be classified
from other perspectives. Rasti er al. [13] gave a review of
the 2-D bandwise techniques to 3-D ones and varieties of
low-rank methods. Later, Rasti ef al. [14] again presented a
study of the HSI denoising methods, which classifies the
denoising methods as full-rank, low-rank, and deep learning
(DL) techniques. In these categories, the model-based HSI
denoising methods have received significant attention in recent
years, which regard the restoration from noisy HSI as an
ill-posed inverse problem and explore the prior information
of HSI in the original domain or fixed domain to design
a calculable regularization model. The popular and effective
priors in HSI denoising can be generalized as local spatial
smooth structure, global spectral correlation, and nonlocal self-
similarity. The method of considering local spatial prior is
mainly to expand the conventional grayscale image denoising
and use the sparse model to HSI band-by-band, such as
wavelet [15], sparse representation [16], spatial total variation
(TV) [17], and spatio-spectral TV [18]. However, the global
spectral correlation which presents a significant advantage for
the denoising issue is ignored.

According to the linear mixture model [19], the global
spectral correlation is hidden in the HSI. Based on this impor-
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tant prior, Zhang et al. [8] first proposed a classical low-rank
matrix recovery (LRMR) for HSI denoising. Following the
idea of the LRMR method, the nonconvex low-rank matrix
approximation methods were proposed for HSI denoising
[20], [21]. Furthermore, extending the low-rank matrix approx-
imation, the low-rank tensor decompositions, including par-
allel factor analysis (PARAFAC) decomposition [4], Tucker
decomposition [22], [23], and tensor singular value decom-
position (t-SVD) [24], were introduced for HSI denois-
ing. However, the spatial information is ignored in these
methods. To capture the spatial smooth structure of HSI,
He et al. [25] first introduced band-by-band TV regulariza-
tion in the low-rank matrix recovery framework (LRTV) for
HSI denoising. By extending the band-by-band TV and low-
rank regularizations, the spatial-spectral TV regularization is
the joint local low-rank regularization [26], low-rank Tucker
decomposition [27], and t-SVD [28] for HSI denoising. The
main drawback of these methods is that the spatial information
of HSI is explored in the local domain, which may not achieve
an optimal result.

The exploration of global spectral correlation can effec-
tively preserve the spectral information of HSI, while the
nonlocal self-similarity is also an important intrinsic char-
acteristic in HSI [29], [30], [31]. Nonlocal self-similarity
illustrates that there are many repeated local patches in
HSI, and thus, a strong correlation exists in the nonlo-
cal dimension by grouping the similar patches. To take
full advantage of these two priors, Peng et al. [9] first
proposed a tensor dictionary learning (TDL) to jointly
model the spectral and nonlocal self-similarity of HSI.
Later, different tensor models, including Kronecker-basis-
representation (KBR)-based tensor sparsity measure [32],
hyper-Laplacian regularized unidirectional low-rank tensor
recovery (LLRT) [33], weighted low-rank tensor recovery
(WLRTR) [34], and tensor ring decomposition [35], have been
proposed to boost the performance of TDL. Although these
methods achieve satisfactory denoising results, the computa-
tional burden is heavy as the number of spectra increases. To
alleviate this problem, the subspace representation frame-
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Exploring nonlocal group sparsity under the transform learning scheme for the reduced image Z.

work, which was proposed for HSI subspace identifica-
tion [36] and then was applied to HSI denoising [37],
is used to project the HSI into a low-dimensional subspace
and capture the spectral correlation [38]. The low-dimension
projected factor is restored by sparse regularization [39],
nonlocal self-similarity regularization [40], [41], [42], [43],
and deep convolutional neural network (CNN) image prior
[12], [43]. Especially, He et al. [41] proposed a unified sub-
space representation paradigm to integrate the spatial nonlocal
and global spectral low-rank property simultaneously.

Although the existing nonlocal self-similarity-based HSI
denoising methods that design appropriate low-rank approx-
imation on each full band patch group have yielded good
results, they still ignore some important problems. First, the
low-rank structure is an external and universal characteristic,
which cannot reveal the characteristic of transformation for
the grouped image. Second, these methods generally ignore
the local spatial smooth structure of the HSI. The reason
is that they designed a regularization term separately for
each prior knowledge. Thus, it needs to add more constraints
to the model if simultaneously capturing these prior knowl-
edges, which makes the model more complicated. Third, the
existing methods preserve the local spatial smoothness of
HSI by sparse modeling under certain transforms, such as
gradient domain (i.e., TV regularization [25], [44]), wavelet
domain [39], or redundant dictionaries [45]. However, the
imaging area of HSI is relatively broad, which makes the
spatial features and edges diverse. Thus, a certain domain
cannot completely depict each local feature block in the whole
image.

Mathematically, adaptive transform domains learned from
the data itself can better preserve the image structure [46].
Moreover, several works have demonstrated that data-driven-
based transform learning can improve the representation
ability of local features and achieve promising results in
various image processing [47], [48], [49], [50]. Inspired by
the success of the transform learning framework, this arti-
cle proposes a novel nonlocal group sparsifying transform
learning (TLNLGS) method for HSI denoising, which can
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Flowchart of subspace representation and TLNLGS method. It mainly includes three stages. (1) Global subspace learning. (2) Reduced image

reconstruction by TLNLGS. (3) HSI restoration from the subspace and reduced image.

effectively explore the characteristic of transformation for the
grouped patch image and take full advantage of the key
prior knowledge of HSI. Different from the previous work
of directly applying the nonlocal self-similarity on HSI itself,
we assume that the HSI lies in a relatively low-dimensional
subspace to preserve the global spectral correlation of HSI
and prevent the heavy computation burden with the spectral
band increase, which has been widely used for HSI denoising
[40], [41], inpainting [38], compressive reconstruction [51],
and superresolution [52], [53] issues. Moreover, instead of
directly using the nonlocal low-rank approximation on the
reduced image as in previous methods, we explore a dis-
criminatively intrinsic nonlocal group sparse prior to the
reduced image using the transform model (see Fig. 1), which
can effectively exploit the nonlocal self-similarity and local
spatial smooth structure of the HSI without introducing more
constraints. Furthermore, the multiple transform domains are
adaptively designed for different grouped images, which is
more effective than the shared and fixed transform domains on
diverse grouped images (see Tables V and VI). The flowchart
of the proposed TLNLGS method is shown in Fig. 2. The
main novelties and contributions are summarized as follows.
1) We explore a discriminatively intrinsic nonlocal group
sparsity of the reduced image based on the transform
learning scheme for HSI denoising, which can simul-
taneously capture the nonlocal self-similarity and local
smooth structure, and get rid of more constraints caused

by more prior knowledge of HSI.
2) We design multiple transform domains to model the
different grouped images, which can improve the sparse

representation ability of diverse spatial information
compared with the fixed transform or shared transform
domains.

3) We design an effective algorithm based on block coor-
dinate descent (BCD) for solving the proposed model
with convergence guarantee. The experiments on the
simulated and real HSIs show that our method achieves
better performances compared with the state-of-the-art
approaches.

The rest of this article is organized as follows. The nota-
tion and problem formulation are introduced in Section II.
Section III presents the proposed TLNLGS model. The opti-
mization procedure is developed in Section IV. Section V
illustrates the experimental results and discussions of our
method. Finally, Section VI concludes this article.

II. NOTATION AND PROBLEM FORMULATION
A. Notation

Tensors, matrices, vectors, and scalars are represented by
calligraphic letter (e.g., X € RI1*2>xxI) holdface capital let-
ters (e.g., X € R’*7), boldface lowercase letter (e.g., x € RY),
and lowercase or uppercase letters (e.g., i, I € R), respectively.
X (i, ia,...,10n) O Xj, 4,.;, denotes an element value of X in
position (iy, iz, ..., i,). The mode-k matricization of a tensor
X € RIv<bxxh g represented as Xy € R Nolictlierdn
In contrast, a tensor can be folded by the unfolding matrices
X along the k-mode X = fold;(X)). The tube, row, and
column fibers of a 3-D tensor X € RI*LX5 are vector
defined as X;, ., Xj,,.iy» and X.;, ;,, respectively. Moreover,
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Fig. 3. (a) Washington dc Mall. (b) Unfolding matrix of (a) along spectral
dimension. (c) Distribution of the singular values of unfolding matrix (b).

the Frobenius norm of a tensor X is calculated as || X
(Eiliibm,in (Xi,.ir.....i,)*) /2. The mode-k multiplication of X €
RAxEx-xh with a matrix U € R/*% is denoted by X x U,
and (X X (Ui ooy fuiitovnin = 2y Xirizeeeia M i

B. Problem Formulation

Let X € RM*N*B be g clean M x N HSI with B spectral
bands, and ) € RY*N*B be the observed HSI degraded by
the Gaussian noise, then the degradation model between these
two HSIs can be formulated as

YV=X+N (1)

where N € RM*NxB denotes the Gaussian noise with zero
mean and variance o°.

The problem of HSI denoising is to restore the clean HSI X
from the noisy HSI ). However, directly estimating X from
the degradation model (1) is an ill-posed problem, i.e., there
exist multiple unexpected solutions. To solve this ill-posed
problem, regularization is an effective method to explore the
prior knowledge about the desired solution.

Based on the regularization method, the restoration of clean

HSI X can be solved by the following regularization model:

)

where the first term is the data fidelity term, R(X)) is the
regularization term that explores the prior knowledge about
the desired HSI, and 7 is a regularization parameter used to
balance the data fidelity term and regularization term.

1
argmin 1V = X[} + AR(X)

ITI. PROPOSED TLNLGS METHOD
A. Global Spectral Correlation Via Subspace Representation

From the perspective of unmixing, each spectral signature
can be approximately represented by a linear combination of
a small number of pure spectral endmembers, and the number
of endmembers is much less than the spectral band [19],
which means that the global spectral correlation exists in the
HSI. To further illustrate the correlation of pixel values in
the spectral dimension, we present the distribution of singular
values of X(3) (unfolding matrix along spectral dimension)
of the Washington dc Mall HSI in Fig. 3. From the curve,
we can observe that the distributions of singular values of
unfolding matrices decay rapidly, which again indicates the
high correlation of HSI in the spectral dimension.

To capture the global spectral correlation of HSI, the
convex matrix nuclear norm [8], [25], nonconvex matrix rank
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Fig. 4. Global spectral correlation of HSI via subspace representation.

approximation [20], [21], and low-rank tensor decomposition
[27], [35] are extensively applied to design the regularization
R(X) for HSI denoising. Recently, extending the representa-
tion of linear mixture model, i.e., HSI can be decomposed as
the product of endmember and abundance matrices, subspace
representation is widely presented to describe the global spec-
tral correlation. Based on subspace representation, the clean
HSI can be represented as

X =2Zx3E 3)

where E € RB*" (r « B) is the basis matrix with orthogonal
columns, and Z € RM*N*" is the reduced image maintained
the similar characteristics with X. Fig. 4 presents the global
spectral correlation of HSI via subspace representation.

Using subspace decomposition, the clean HSI can be trans-
formed into a low-dimensional subspace to estimate, which
reduces the computation complexity. Moreover, subspace rep-
resentation has been proven to be an effective method for
handling HSI restoration [38], [41]. Based on the exploration
of subspace representation of HSI, the estimation of HSI in
the regularization model (2) can be formulated as

1 2
argmin Elly—Z x3 E||5 (4)

which transforms the estimation of the original HSI into two
representation factors.

B. Nonlocal Group Sparsity Prior of Reduced Image Under
Transform Learning

Although the restoration model (4) effectively explores the
spectral prior, it ignores the spatial prior information of HSI.
Previous works have been demonstrated that simultaneously
considering the spectral and spatial priors can achieve better
results [38], [41]. Since the reduced image Z inherits the
spatial characteristic of the original HSI as shown in Fig. 4,
the regularization of spatial prior of the original HSI &X' can be
transformed to regularize the reduced image Z. Therefore, the
denoising model (4) is extended to the following formulation:

argmin 51V~ 2 s EI} + 2R(2) 5)
where R(Z) is the regularization term related to the spatial
prior depiction of reduced image Z.

TV regularization is usually designed to constrain the
reduced image [54]. However, TV regularization simply
explores the local spatial feature and ignores the nonlocal
image block information. The spatial nonlocal self-similarity
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prior of the reduced image is a powerful tool to maintain the
spatial information, and the state-of-the-art denoising results
have been achieved in [40], [41] through integrating such
prior information. The principle of nonlocal similarity is that
there are many repeated local patterns across the image. The
step of grouping similar 3-D patches of reduced image Z is
shown in the block matching part of Fig. 1. By grouping the
similar patches together, the existing works mainly explored
the correlation characteristic and used the nonlocal low-rank
approximation to describe grouped image R; Z [40], [41].

The low-rank approximation regularization of the grouped
image can achieve satisfactory denoising results under the sub-
space representation framework. However, the use of low-rank
regularization alone ignores the local piecewise smooth struc-
ture of the grouped image. It is well-known that HSI contains
the local smooth structure, such that the reduced image has
a similar feature [25], [38]. Since the grouped image is
extracted from the reduced image, certain smooth structure
is also inherited in the grouped image. To compensate the
local smooth structure of grouped image R;Z, the low-rank
approximation and sparse regularization in certain transforms
or over dictionaries can be used to constrain R; Z. However,
the intuition behind this idea is to add two regularization
constraints into the model, which makes the model more
complex and difficult to optimize. Moreover, early works used
the sparse prior in a fixed transform domain, e.g., gradi-
ent domain, wavelets’ domain, and discrete cosine transform
(DCT), to exploit the local smooth structure. Due to the fact
that the spatial structures of HSI are diverse, a certain domain
cannot completely depict the local feature in the whole image.
Although the data-driven-based synthesis dictionary learning is
the effective adaptive sparse excavation tool, the sparse coding
step is an NP-hard problem [55]. Furthermore, this combina-
tion failed to reveal the characteristic of transformation of the
grouped image since they directly designed regularizations on
the original domain or fixed domain.

To overcome the aforementioned drawbacks, we explore the
discriminatively intrinsic nonlocal group sparse regularization
of the reduced image under the transform learning scheme.
Fig. 1 illustrates in detail the process of exploring nonlocal
group sparsity under the transform learning model for the
reduced image Z extracted from the real Washington dc
Mall dataset. Instead of directly designing the regularization
to the image patch V;Z € RP*P*"  where V; is a linear
operator extracting the ith pixel overlapping cube patch of Z,
we construct the grouped image as R;Z € RP7d The
operator R; first divides the reduced image Z € RM*N*" ag
an overlapped patch tensor V; Z with the size of p x p x r,
then finds d similar patches for each ith key patch by block
matching, and finally reshapes the nonlocal grouped patch
as R;Z, where the column dimension is the nonlocal self-
similarity mode. Therefore, for a given transform W; for each
grouped image, the group sparse prior of the reduced image
is explored in the transform domain. The horizontal axis is
the £>-norm value of each row for W;R;Z, and the vertical
axis is the number of corresponding values in the statistical
histogram. It is clear that most {,-norm values are zero or
near zero, which indicates that there are many zero rows in

5537518

W, R; Z. Therefore, the reduced image has the nonlocal group
sparse prior under the transform model.

In reality, the grouped image may be polluted by some
noise and even have some errors, leading to the deviation from
desirable group sparsity constraint. Therefore, the solution of
the data can be modeled as W;R;Z = G; + N;, where G;
is the group sparse component, and N; is the noise or error.
Based on this observation, the regularization term R(Z) can
be designed as

1
RZ)=Y (Enwnz,»z ~Gill% + r||Gi||z,1) ©)

l

where 7 is a regularization parameter, and ¢, is used to
describe the group sparse prior of G;, which is defined as
IRI21 = 3, IRC, &)l

It is worth noting that instead of using fixed transforms or
synthesis dictionaries, we use a learning-based transform W;
to explore the group sparsity of R;Z. Moreover, since the
image scenes are diverse in whole HSI, different transforms
W, are adaptively obtained from each grouped image by group
sparsifying transform learning. For the dimension of the group
sparsifying transform W;, it usually can be overcomplete [48]
or square [47]. In our work, following the strategy in [47],
we set W; as a square matrix and impose the orthogonal
properties (i.e., W; € RP7 <P and WiTW,- = I). Recently,
Xue et al. [56], [57] have applied the sparsity transform learn-
ing framework for multidimensional data recovery. However,
they mainly learn a basis transform matrix to capture the low-
rank property, i.e., the second dimension of the transform
matrix is much smaller than the first dimension. In contrast,
the proposed method learns a redundancy transform matrix to
explore the potential structure of the grouped image.

C. Proposed Model

Based on the above-mentioned analysis, it is natural for
us to incorporate the nonlocal group sparse term of reduced
image (6) into the denoising model (5), and then the proposed
model can be formulated as

. 1
min =V - Z x3E|}

E.ZW,G; 2
1
+ Z{Enwiniz —Gill7 + r||Gi||2,1}
st EE=1, W/'W, =1 7

The basic idea of the proposed model is that the nonlocal
self-similarity and local smooth structure of the reduced image
can be well-depicted by the group sparsity under the transform
learning framework; meanwhile, the subspace representation
captures the global spectral correlation of HSI. Under the
unified framework of subspace representation, synthesis-based
group sparse prior thoroughly excavates the potential charac-
teristics of the reduced image, yielding better HSI denoising
results.

Remark (The Group Sparsity of R;Z Under Transform
Matrix W;): It is well-known that HSI contains the local
smooth structure such that the reduced image Z has a similar
feature. Since all the patches of the grouped image are
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extracted from the reduced image, and the column of R;Z
is stacked by vectoring the image patches, the grouped image
RiZ also has a smooth structure along the column direction.
Under the sparsifying transform matrix W;, the matrix R; Z is
sparse. Moreover, benefiting from the nonlocal self-similarity
property, the grouped image R;Z has a strong correlation,
indicating that each column of R; Z can be linearly represented
by a small number of identical columns in W/ . Therefore, the
representation coefficient G; should have the property of group
sparsity.

D. Difference Between TLNLGS and Related Methods

In this section, we discuss the difference between TLNLGS
and related methods in detail.

1) Difference With Nonlocal Low-Rank-Based Methods:
The representative global local factorization (GLF) [40] and
nonlocal meets global (NGmeet) methods [41] used the sub-
space representation to capture the global spectral of HSI and
then designed the nonlocal prior to reconstruct the reduced
image. However, they are very different from our work.
These two methods ignored the important spatial piecewise
smoothness of HSI. Moreover, they designed the low-rank
approximation on the grouped patch image in the original
domain, failing to further reveal the characteristic of trans-
formation. In contrast, our method explores a discriminatively
intrinsic nonlocal group sparse prior to the reduced image by
the transform learning scheme, which can effectively exploit
the low-rank and local spatial smooth structure of HSI.

2) Difference With Group-Sparsity-Based Regularization
Methods: The group sparse regularization was proposed
in [58] for HSI denoising and then was improved in [59].
Recently, combining the low-rank prior, the group sparsity
regularized low-rank approximation methods were proposed
for HSI denoising [54]. Again, these methods directly used
group sparse regularization to constrain the reduced image in
the original domain, wavelet domain, discrete cosine domain,
or fixed gradient domain. The proposed method regularizes
the nonlocal grouped image of the reduced image in the
multiple transform domains by group sparse regularization,
which reveals the discriminatively intrinsic prior to the reduced
image. The experimental results show that the adaptive mul-
tiple transform is indeed better than a fixed domain (see
Table VI).

IV. ALGORITHM

It is generally difficult to directly solve the proposed model
due to the coupling of these optimization variables. To address
this, we are motivated to use the simple BCD algorithm
framework for optimization. There are mainly four steps in
each iteration: 1) global subspace E learning; 2) group sparsity
G; coding; 3) transform W; learning; and 4) reduced image Z
reconstruction. In the following, we present the optimization
details of each step.

A. Global Subspace E Learning

For a fixed coupled variable Z, the subproblem of global
subspace E learning in model (7) is presented as

1
min 5||y —Zx3E|%, st ETE=1. (8)
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According to [32], this subproblem has the closed-form
solution of E = UVT, where U and V are the left and right
singular vectors of Y(3)Z(T3), respectively. However, optimiza-
tion is only suitable for the first iteration. The reason is that
the iterative refinement strategy is used in our algorithm, and
then the size of E is changed in the next iteration. Therefore,
following [41], the orthogonal subspace E can be learned from
singular value decomposition (SVD) of Y 3), which is a simple
operation.

B. Group Sparsity G; Coding

Given the transform W; and reduced image Z, we solve the
model (7) for group sparsity coding as

1
min S [WiRiZ = Gilli + 71Gill2. ©)

which is a standard group sparsity coding problem. Let
W.:R;Z = R, the closed-form solution of each row of G;
is computed by the following thresholding operator:

IRG, Il —7

R(j,:), if |R(/j,:
||R(],)||2 (]9 )’ 1 || (J’ )||2> T

otherwise.

Gi (.]» :) =
09
(10)

C. Transform W; Learning

The subproblem of model (7) with respect to transform W;
can be learned by the following:

1
rrvlén §||WiRiZ—G,»||§, s.t. W/W,; =L (11)

With the orthogonal constraint, the closed-form solution of
transform W, can be achieved by W; = UV’ [32], where
R:ZG! =USVT denotes the condensed SVD of R;ZG/ .

D. Reduced Image Z Reconstruction

With obtained E, G;, and W;, the reduced image Z recon-
struction problem reduces to

1 1
min 31V = 25 Elf +43  SIWiRiZ = Gili. (12)
Since the orthogonal matrix preserves the Frobenius norm,
the following equation holds:
2
IWiRiZ = Gill; = [|[RiZ = WG], (13)

where W/ G; represents the restored patch via group sparsi-
fying approximation.
Based on (13), problem (12) is equivalent to
. 1 2 1 T 2
min =1V — 2 x3 B} HZ EHR,Z ~W/G|;, (149

which is a least-square problem with the closed-form solution
achieved by solving the normal linear equations’ system

(I—i—iZRiTRi)Z: (Vx3E") + 1> R (W/G)).

5)
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Algorithm 1 TLNLGS-Based HSI Denoising

Require: Noisy HSI ), parameters 4, 7, y =2, and 6 = 0.1.

1: Initialize: X©@ = Y© = Y initializing W; using 2-D
DCT, and estimating ) using HySime [36].

2:.for k=1:K do

3. Update subspace r® = r*=D 4y % (k — 1).

4;  Calculate YW = x*&=D 4 5y — X("_l)).

5:  Learn orthogonal subspace E and initialize reduce image

Z via SVD on Yg‘; and folds (ETY%), respectively.

Group sparsity G; coding for all i via (10).

Transform W; learning for all i via (11).

Reduced image Z reconstruction via (15).

9:  Denoised HSI reconstruction XY® = Z x; E.

10: end for

Ensure: Denoised HSI X'®,

® 3 a

Here, R,T . RPPrxd _, RMxNxr represents the inverse
operator of R;, which aggregates all the restored patches into
the image with the size of RM*N>" %™ RIR; counts the
number of the patches in all the R; Z that contain the pixel.

Based on the above iterations, we can obtain the entire algo-
rithm for solving the model (7), as summarized in Algorithm 1.
Since the rank (the number of column of E) of globe subspace
E results in a balance between the oversmooth (lower rank)
and detail preservation (higher rank), we refine the rank of
E on Step 3 in Algorithm 1 to improve the denoising results.
Moreover, the iteration regularization on Step 4 in Algorithm 1
has also been demonstrated to boost the final results.

E. Convergence Analysis

In the following, we establish the convergence theorem of
the proposed algorithm.
Theorem 1: Given any finite initialization, the sequence
generated by Algorithm 1 converges to a critical point of (7).
Proof: Let f(E, Z,W;,G;) = (1/2)|Y — Z x :E[} +
A3 A1/ IWR:Z — Gill3 + lGill,1} be the objective
function in (7). We can easily verify that the objective f is
block multiconvex, i.e., f is convex with respect to any block
of variables while fixing the other blocks [60], and Lipschitz
differentiable on any bounded set, i.e., V f is Lipschitz con-
tinuous. Note that the iterate for each block in Algorithm 1
follows the exact minimization update scheme, i.e., [60, (1.3a)
in page 1759]. Moreover, we can show that f is a Kurdyka—
Lojasiewicz function (see [61, Definition 3]) via following
the similar analysis in the proof of [61, Proposition 2] and
[62, Corollary 1(c)]. Thus, the global convergence of the
suggested Algorithm 1 (i.e., convergence regardless of initial
point) can be established by [60, Theorem 2.8].

F. Analysis of Computational Complexity

The computational complexity of the proposed TLNLGS
is given in the following. We assume that the size of input
HSI Y is M x N x B, the subspace is r, the patch size is
d x d, and the number of similar image patches is d. The
orthogonal subspace E is learned via SVD on Ygg, and the
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complexity is O(MNB?). The computational complexity of
group sparsity coding is O(p*r2d), which is mainly from the
cost of forming matrix R. The transform update is first to form
matrix R; Z GiT, and then use the SVD; thus, the computational
complexity is O(p*r?d + p°r?). The reconstruction of reduced
image Z is a simple division, whose computational complexity
is O(MNBb + Ip*r2d), where I is the number of grouped
images. Therefore, the total computation complexity of Algo-
rithm 1 is O(MNB? + (p*r2d + p°®r3)I + MNBb + Ip*r?d).
Although the number of grouped image is large, the group
sparsity coding and transform update can be performed using
parallel computing.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, several experiments are implemented to eval-
uate the effectiveness of the proposed TLNLGS on the simu-
lated and real datasets. Eleven state-of-the-art HSI denoising
methods have also been conducted for comparison, including
low-rank tensor approximation (LRTA) method [63], TDL [9],
low-rank tensor decomposition with TV regularization method
(LRTDTV) [27], parameter-free method (HyRes) [39], fast
HSI denoising method (FastHyDe) [38], GLF [40], KBR [32],
LLRT [33], WLRTR [34], disentangled spatiospectral deep
prior (DS2DP) method [12], and NGmeet [41]. Note that
these methods involve low-rank matrix approximation-based,
low-rank tensor decomposition-based, nonlocal self-similarity-
based, and DL-based state-of-the-art methods for a compre-
hensive comparison. The codes of the compared methods can
be downloaded from the authors’ homepage, and the hyper-
parameters in different experiments are set based on either
authors’ codes or suggestions in the reference articles. The
results are performed in MATLAB R2020b using a desktop of
32-GB RAM, with an Intel Core i9-10850K CPU at 3.60 GHz.

A. Experiments on HSI With Synthetic Noise

1) Experimental Setting: We choose two synthetic HSI
datasets. One is the Washington dc Mall dataset (WDC,')
whose size is 256 x 256 x 191, with complex texture and
boundary information. The other one is the Pavia City Center
dataset (PaC,?), and the size of PaC is 200 x 200 x 80.
To simulate the noisy HSI data, seven different types of
Gaussian noises are added to the clean HSI data. The noise
settings are additive Gaussian noise N(0,¢%I) with ¢ =
10, 30, 80, 100, and Gaussian noise N(0, £?) where X is
a diagonal matrix with diagonal elements sampled from a
uniform distribution U[10, 100] and U[30, 80]. The signal-
to-noise ratios (SNRs) associated with different Gaussian
noise cases on two datasets are listed in Table I. Moreover,
to demonstrate that the proposed method can be extended to
remove mixed noise, we add the mixtures of Gaussian noise,
impulse noise, dead line noise, and stripe noise to simulate the
noisy image. The standard deviation of the Gaussian noise and
percentages of impulse noise are uniformly sampled within the

Uhttps://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral html
Zhttp://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes
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TABLE I
SNR OF SIMULATED NOISY HSI FOR THE GAUSSIAN NOISE CASES

o 2 10 30 80 100 [10, 100] [30, 80]
WDC 29307 15327 5785 -2735 -4.673 [-4.673, 15.327] [-2.735, 5.785]
PaC 29.225 15246 5704 -2.816 -4.754  [-4.754, 15.246]  [-2.816, 5.704]

Fig. 5.

Denoised results of the WDC dataset in the case ¢ = 100. The false color image is composed by bands (R: 108, G: 25, and B: 11). (a) Original.

(b) Noisy. (c) LRTA. (d) TDL. (e) LRTDTV. (f) HyRes. (g) FastHyDe. (h) GLF. (i) KBR. (j) LLRT. (k) WLRTR. (I) DS2DP. (m) NGmeet. (n) TLNLGS.

Fig. 6. Denoised results of the WDC dataset in the case ¢ = [30, 80]. The false color image is composed by bands (R: 109, G: 95, and B: 160). (a) Original.
(b) Noisy. (c) LRTA. (d) TDL. (e) LRTDTV. (f) HyRes. (g) FastHyDe. (h) GLF. (i) KBR. (j) LLRT. (k) WLRTR. (1) DS2DP. (m) NGmeet. (n) TLNLGS.

range of U[10, 100] and U|[0, 0.1], respectively. In addition,
we severally select 10% of all the bands to add dead line
and stripe noises. For the parameters’ setting of our method,
we will give in the discussion part.

2) Quantitative Indices: Five quantitative indices, includ-
ing peak signal-to-noise ratio (PSNR), structure similarity
(SSIM) [64], feature similarity (FSIM) [65], erreur relative
globale adimensionnelle de synthese (ERGAS) [66], and spec-
tral angle mapper (SAM), are used to evaluate the denoising
performance of different methods. PSNR, SSIM, and FSIM
are mainly used to measure the spatial information, while
ERGAS and SAM measure the ability of spectral information
preservation. The better restoration results are reflected by
larger PSNR, SSIM and, FSIM values, and smaller ERGAS
and SAM values. Moreover, time cost in seconds is given.

3) Experimental Results on WDC Dataset: In terms of
visual comparison, two representative denoised cases obtained

by different methods are presented. Figs. 5 and 6 present
the restoration results of Gaussian noise with ¢ = 100 and
Gaussian noise with ¢ = [30, 80], respectively. Since LRTA
and LRTDTYV directly use LRTA for the original image, the
performance is limited. Although the noise removal effects by
the nonlocal-based methods TDL, KBR, LLRT, and WLRTR
are improved, the restored spectral signatures are distorted.
The HyRes method can eliminate obvious noise, but the
detail is destroyed as presented in the enlarged box. Subspace
representation with the nonlocal self-similarity-based meth-
ods FastHyDe, GLF, and NGmeet obtain satisfactory results
compared with other methods, but the restoration results are
slightly smoothed in ¢ = 100. The DL-based method DS2DP
can eliminate most of the noises, but the noise removal
is incomplete as shown in the enlarged box. On the con-
trary, by exploring the group sparsity on the nonlocal image,
TLNLGS removes heavy Gaussian noises while preserving the
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TABLE 1I
QUANTITATIVE RESULTS OF COMPARISON METHODS ON THE WDC DATASET UNDER DIFFERENT NOISE CASES
o Index Noisy LRTA TDL LRTDTV ~ HyRes  FastHyDe GLF KBR LLRT  WLRTR DS2DP  NGmeet TLNLGS

PSNR 42.11 46.50 50.44 46.38 50.46 50.41 49.93 45.44 46.94 47.69 44.09 50.09 50.52

SSIM 0.987 0.994 0.998 0.996 0.998 0.998 0.998 0.996 0.996 0.996 0.995 0.998 0.998

FSIM 0.994 0.997 0.999 0.998 0.999 0.999 0.999 0.998 0.998 0.998 0.997 0.999 0.999

2 ERGAS 33.13 21.39 13.53 20.34 14.24 13.87 15.41 2221 18.96 18.98 26.90 13.91 13.21
SAM 3.868 2.559 1.428 1.944 1.565 1.455 1.565 1.693 1.996 1.857 2.300 1.506 1.363

Time 1.8 245 181.4 3.6 19.7 180.2 27274 1864.8 3170.3 6813.9 104.8 331.7

PSNR 28.13 38.61 41.90 38.40 42.28 41.40 41.61 40.60 41.99 42.61 40.28 42.44 42.90

SSIM 0.781 0.973 0.989 0.977 0.989 0.989 0.990 0.986 0.991 0.990 0.984 0.991 0.992

FSIM 0.903 0.986 0.993 0.988 0.994 0.993 0.993 0.992 0.994 0.994 0.991 0.994 0.995

10 ERGAS 165.67 49.30 34.32 50.64 33.02 38.10 37.44 38.47 35.94 31.76 40.94 32.83 30.13
SAM 16.408 5.559 3.396 4.482 3.408 3.878 3.800 2.944 3.438 2918 3.953 3.208 2.709

Time 4.8 24.5 163.2 2.8 88.8 2878.8 4237.7 3169.8 6834.6 104.6 168.7

PSNR 18.59 32.75 35.07 34.44 36.13 37.19 37.47 34.83 36.33 36.99 34.51 37.76 37.84

SSIM 0.368 0.916 0.954 0.943 0.961 0.971 0.973 0.953 0.967 0.970 0.945 0.974 0.975

FSIM 0.693 0.951 0.974 0.968 0.978 0.982 0.984 0.972 0.981 0.982 0.968 0.984 0.985

30 ERGAS 497.00 94.37 72.92 77.75 65.15 57.86 55.99 73.84 65.89 58.26 77.66 53.42 5291
SAM 36.442 8.092 6.119 6.149 6.205 5.229 4.991 4.968 5.169 4.713 6.424 4.400 4.297

Time 9.0 23.6 163.4 2.7 75.0 3000.2  4173.4 3154.3 6855.6 103.6 179.6

PSNR 10.07 27.81 29.38 29.94 30.45 32.29 3252 2943 31.04 31.30 28.73 32.32 32.71

SSIM 0.093 0.782 0.850 0.861 0.880 0.920 0.923 0.845 0.894 0.899 0.833 0918 0.926

FSIM 0.445 0.883 0.918 0919 0.934 0.952 0.954 0.908 0.940 0.942 0911 0.953 0.957

80 ERGAS 1324.58 166.36 138.93 130.20 123.18 99.54 96.76 137.45 116.10 110.80 149.42 98.85 94.50
SAM 59.512 10.596 8.842 8.692 9.602 7413 7.109 7.963 7.104 7.899 9.488 6.732 6.577

Time 6.5 224 191.7 2.6 66.7 53282 41463 3161.9 6855.4 99.7 108.1

PSNR 8.13 26.71 27.73 28.86 29.34 31.25 31.32 28.45 29.94 29.77 27.79 31.16 31.56

SSIM 0.062 0.733 0.799 0.828 0.848 0.901 0.901 0.810 0.864 0.860 0.801 0.895 0.905

FSIM 0.391 0.861 0.893 0.902 0.918 0.941 0.942 0.886 0.923 0.923 0.894 0.941 0.945

100 ERGAS  1656.79  188.76  167.63 147.15 139.68 112.02 111.00 15398  131.28 131.77 167.12 112.80 108.04
SAM 64.289 11.249 9.852 9.317 10.086 8.055 7.758 8.695 7.632 9.058 10.226 7.274 7.089

Time 3.4 20.7 189.9 2.7 71.8 44925 41169 3217.9 6833.5 117.7 106.6

PSNR 14.06 2191 22.14 30.57 35.45 37.17 36.82 30.77 29.37 29.96 31.17 30.57 36.62

SSIM 0.229 0.492 0.511 0.866 0.955 0.972 0.970 0.884 0.820 0.835 0.896 0.883 0.972

FSIM 0.558 0.747 0.776 0914 0.974 0.983 0.981 0.931 0917 0.915 0.940 0.937 0.982

[10, 100] ERGAS 1063.11 387.18 420.51 121.15 69.99 57.84 60.01 119.64 146.85 184.36 116.07 171.50 61.05
SAM 54.376 29.758 31.572 7.106 6.556 5.253 5.297 7.982 12.445 15.944 8.701 13.405 5.009

Time 9.8 28.0 222.8 2.7 724 5522.0 43202 35184 6834.5 118.6 108.9

PSNR 13.73 23.13 29.53 31.63 33.26 34.96 35.04 31.31 31.38 32.58 30.70 31.41 34.86

SSIM 0.190 0.560 0.844 0.894 0.931 0.954 0.955 0.898 0.892 0.919 0.882 0.897 0.955

FSIM 0.553 0.781 0.928 0.941 0.961 0.972 0.973 0.939 0.944 0.954 0.934 0.945 0.973

[30,80]  ERGAS 91895  300.97 14131 112.62 89.84 73.70 73.12 110.84  112.18 98.51 121.44 132.34 74.13
SAM 51.284 24.632 11.121 8.095 7.656 6.179 5.889 6.982 8.883 7.756 9.289 12.198 5.584

Time 9.0 24.4 190.1 2.7 74.6 5589.1 2467.9 3160.4 6854.5 118.7 107.2

PSNR 12.02 20.91 21.38 29.30 24.64 2497 24.93 23.73 23.47 24.27 31.58 24.25 29.60

SSIM 0.024 0.476 0.500 0.829 0.795 0.813 0.805 0.719 0.723 0.758 0.909 0.771 0.860

FSIM 0.521 0.770 0.809 0.886 0.933 0.941 0.935 0.877 0.893 0.907 0.949 0.881 0.930
mixed ERGAS 939.24 421.74 408.53 140.55 307.17 306.50 305.94 322.66 303.36 318.12 108.93 239.49 169.14
SAM 45.891 22.021 21.147 7.568 14.474 14.440 14.452 15.086 13.462 15.149 8.480 10.427 13.936

Time 124 30.8 185.8 2.7 74.7 5489.2 1973.4 3834.0 6873.7 13.9 113.9

PSNR 18.36 29.79 32.20 33.69 35.25 36.21 36.21 33.07 33.81 34.40 33.61 35.00 37.08

SSIM 0.342 0.741 0.806 0.899 0.920 0.940 0.939 0.886 0.893 0.903 0.906 0916 0.948

FSIM 0.632 0.872 0.911 0.940 0.961 0.970 0.970 0.938 0.949 0.952 0.948 0.954 0.971

average ERGAS 824.81 203.76 174.71 100.05 105.28 94.93 94.46 122.39 116.32 119.07 101.06 106.89 75.39
SAM 41.509 14.308 11.685 6.669 7.444 6.488 6.358 7.039 7.516 8.162 7.358 7.394 5.821

Time 7.1 249 186.0 2.8 88.0 4378.4 3412.6 3298.4 6844.5 97.7 153.1

image details. Using data whitening, HyRes, FastHyDe, GLF,
and TLNLGS achieve better denoising results in the case of
o =130, 80].

In terms of quantitative comparison, the results of different
methods on the WDC datasets under different noise cases
are listed in Table II. We highlight the top two algorithms
using two different colors (red and blue). From the results,
our method considerably outperforms the compared methods
in most indices and noise cases, which demonstrates that our
method achieves a superior performance of preserving the
image details while removing noise from the noisy images.

DS2DP obtains the best result in the case of mixed noise since
it is mainly designed for mixed noise removal. Specifically,
compared with the outstanding noise removal methods GLF
and NGmeet, the proposed method achieves a substantial
improvement in the cases of mixed noise, indicating the
potency of exploring the nonlocal group sparsity. For compu-
tational efficiency, the LRTA, HyRes, and FastHyDe methods
are obviously superior to other methods. However, compared
with the nonlocal-based methods (KBR, LLRT, and WLRTR)
and the DL-based approach (DS2DP), the time cost of the
proposed method is advantageous.
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(h)

Fig. 7.

Denoised results of the PaC dataset in the case ¢ = 100. The false color image is composed by bands (R: 79, G: 40, and B: 2). (a) Original.
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(b) Noisy. (c) LRTA. (d) TDL. (e) LRTDTV. (f) HyRes. (g) FastHyDe. (h) GLF. (i) KBR. (j) LLRT. (k) WLRTR. (1) DS2DP. (m) NGmeet. (n) TLNLGS.

Fig. 8.

(n)

Denoised results of the PaC dataset in the case ¢ = [30, 80]. The false color image is composed by bands (R: 78, G: 35, and B: 21). (a) Original.

(b) Noisy. (c) LRTA. (d) TDL. (e) LRTDTV. (f) HyRes. (g) FastHyDe. (h) GLF. (i) KBR. (j) LLRT. (k) WLRTR. (1) DS2DP. (m) NGmeet. (n) TLNLGS.

4) Experimental Results on PaC Dataset: Figs. 7 and 8
show some visualization results of our method in comparison
to other existing HSI denoising methods for removing noise in
the PaC dataset. LRTA and TDL cannot completely remove the
noises and obtain artifacts. From the enlarged results shown
on the left-bottom, it can be seen that the textural details
are very well restored with NGmeet and TLNLGS, while
most approaches suffer from serious missing image details
and incomplete noise removal. FastHyDe and GLF effectively
remove noise, but with blurred details. Although NGmeet
obtains satisfactory result in Fig. 7, incomplete noise removal
also exists in Fig. 8. On the whole, our method can use the
potential structure sparsity as a prior to remove the noise and
preserve the image details.

Table III shows quantitative metrics about ours and other
methods under different noise intensities on the PaC dataset.
It can be observed that the proposed TLNLGS outperforms
the comparison methods in most cases, which is similar to
the WDC dataset. Moreover, from the result of averaging
different noise cases, the proposed method also achieves
better quantitative results. For the running time, HyRes and
LRTA cost shorter times than other methods. The proposed
method has a tradeoff between the performance and execution
time.

I

PSNR values
PSNR values

LRTA FastHyDe ——WLRTR
—4—TDL ~ ——GLF —#*—DS2DP 24
LRTDTV —#—KBR ~—h—NGmeet
——HyRes —=—LLRT  —+—TLNLGS

LRTA FastHyDe —0— WLRTR
—4—TDL  ——GLF —6—DS2DP

LRTDTV —%—KBR —k—NGmeet
——HyRes —#—LLRT  —*—TLNLGS
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Fig. 9. PSNR and SSIM values of each band in the case of ¢ = 100 on the
WDC and PaC datasets. (a) WDC dataset. (b) PaC dataset.

Fig. 9 presents the PSNR and SSIM values of each band in
the case of ¢ = 100 on the WDC and PaC datasets. Clearly,
the PSNR and SSIM values of LRTA are lower than one
of the other denoising methods since they ignore the spatial
prior information. In contrast, the proposed method achieves
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TABLE III
QUANTITATIVE RESULTS OF COMPARISON METHODS ON THE PAC DATASET UNDER DIFFERENT NOISE CASES
o Index Noisy LRTA TDL LRTDTV ~ HyRes  FastHyDe GLF KBR LLRT WLRTR DS2DP  NGmeet TLNLGS
PSNR 42.10 44.90 49.02 46.37 4941 49.52 49.77 46.38 49.68 47.50 45.06 49.80 49.99
SSIM 0.988 0.994 0.998 0.996 0.998 0.998 0.998 0.996 0.998 0.997 0.996 0.998 0.998
FSIM 0.993 0.996 0.999 0.998 0.999 0.999 0.999 0.998 0.999 0.998 0.997 0.999 0.999
2 ERGAS 28.96 21.08 13.25 17.91 12.73 12.57 12.24 17.79 12.36 15.90 21.25 12.15 11.84
SAM 3.901 2.839 1.644 2.065 1.648 1.603 1.568 1.767 1.518 1.777 2.116 1.527 1.462
Time 1.5 6.4 442 1.2 64.7 770.3 508.9 966.2 3894.9 38.9 127.2
PSNR 28.12 38.19 41.54 39.82 41.42 42.17 42.92 40.06 4227 41.99 38.84 43.29 4333
SSIM 0.799 0.973 0.988 0.984 0.988 0.990 0.991 0.984 0.990 0.990 0.980 0.992 0.992
FSIM 0.899 0.984 0.993 0.991 0.992 0.994 0.995 0.991 0.994 0.994 0.987 0.995 0.995
10 ERGAS 144.80 46.02 31.32 37.80 31.79 29.06 26.66 36.76 3223 29.96 42.73 25.50 25.45
SAM 16.089 5.158 3.186 3.580 3.356 2.989 2.596 2.881 2.867 2.732 4.230 2.497 2.363
Time 1.6 5.8 48.0 1.0 45.9 740.0 503.2 1038.4 3895.1 46.7 43.6
PSNR 18.58 32.12 34.54 34.45 34.69 35.99 36.63 34.35 35.76 35.98 3291 37.04 37.24
SSIM 0.368 0.910 0.949 0.943 0.948 0.962 0.968 0.947 0.962 0.964 0.923 0.971 0.972
FSIM 0.683 0.936 0.968 0.966 0.967 0.974 0.979 0.967 0.976 0.977 0.948 0.981 0.982
30 ERGAS 434.24 91.26 69.24 70.39 68.65 58.95 54.26 70.51 68.44 59.46 84.16 51.75 50.61
SAM 34.908 7.903 5.382 5.994 5.903 5.017 4.247 4.325 4.887 4.605 7.549 4.086 3.612
Time 24 5.0 50.8 0.7 41.7 8714 495.3 1040.8 3905.0 47.5 51.1
PSNR 10.07 26.20 28.60 28.78 28.96 31.19 31.29 29.12 30.23 30.61 27.78 31.71 31.86
SSIM 0.084 0.719 0.830 0.833 0.842 0.900 0.901 0.842 0.884 0.892 0.803 0912 0913
FSIM 0.430 0.829 0.893 0.900 0.904 0.933 0.935 0.898 0.927 0.927 0.883 0.942 0.946
80 ERGAS 1156.86 178.75 136.32 138.13 131.74 101.73 100.02 128.33 117.60 109.13 149.66 95.32 93.58
SAM 58.334 10.500 7.646 10.958 8.257 7.493 6.334 6.305 6.465 7.737 8.172 6.156 5.209
Time 1.8 4.9 53.5 0.6 38.3 1411.4 492.2 1058.9 3911.3 443 35.0
PSNR 8.13 25.25 27.12 27.76 27.91 30.10 30.16 28.04 29.09 29.39 27.05 30.60 30.73
SSIM 0.054 0.662 0.773 0.795 0.806 0.878 0.877 0.807 0.854 0.860 0.782 0.891 0.894
FSIM 0.376 0.805 0.859 0.880 0.886 0.918 0.919 0.873 0.907 0.909 0.871 0.929 0.934
100 ERGAS 144690 19930  161.30 157.36 147.83 114.94 113.83 14516  132.58 125.00 162.86 108.20 106.45
SAM 63.333 10.341 7.823 12.162 8.586 8.007 6.708 6.902 6.806 8.578 10.221 6.521 5.710
Time 1.3 4.0 52.7 0.6 38.3 1304.9 491.1 1066.6 3887.6 57.0 339
PSNR 14.32 21.79 22.48 29.73 3441 36.07 36.10 29.86 28.17 28.99 29.90 27.15 36.82
SSIM 0.235 0.488 0.531 0.828 0.945 0.963 0.965 0.868 0.789 0.818 0.873 0.780 0.970
FSIM 0.551 0.730 0.772 0.899 0.964 0.975 0.977 0914 0.894 0.895 0.926 0.877 0.981
[10, 100] ERGAS 924.49 343.05 365.27 207.53 70.73 58.29 57.64 118.53 150.78 210.03 119.53 274.57 53.17
SAM 52.845 27.883 29.173 20.248 6.117 5.041 4.602 6.730 13.678 18.620 7.572 23.258 3.939
Time 3.0 6.5 55.3 0.7 40.0 1728.7 512.9 1079.2 3899.2 57.5 50.4
PSNR 13.82 2343 26.89 31.08 31.96 33.68 34.03 30.73 31.37 31.17 30.00 28.68 34.65
SSIM 0.188 0.586 0.740 0.887 0.910 0.940 0.944 0.888 0.898 0.901 0.873 0.823 0.952
FSIM 0.541 0.773 0.879 0.930 0.943 0.959 0.964 0.928 0.939 0.935 0.917 0.901 0.969
[30, 80] ERGAS 806.84 258.98 177.34 102.29 93.25 76.41 72.97 107.09 105.33 105.13 116.80 204.16 67.89
SAM 49.622 22.499 15.862 6.763 6.969 6.111 5.127 5.888 8.361 8.167 9.650 18.908 4.670
Time 2.6 6.7 49.1 0.7 38.6 1614.6 582.3 1061.5 3903.5 57.0 49.5
PSNR 14.03 22.01 22.49 27.31 25.82 26.31 26.38 24.80 24.78 25.09 30.31 24.25 27.87
SSIM 0.204 0.530 0.554 0.756 0.829 0.858 0.854 0.766 0.779 0.784 0.891 0.771 0.814
FSIM 0.582 0.769 0.807 0.826 0.921 0.936 0.932 0.873 0.887 0.892 0.932 0.881 0.895
mixed ERGAS 810.88 318.17 31042 158.62 218.32 217.03 214.65 23440  223.87 235.62 115.19 239.49 208.16
SAM 43.084 17.117 16.825 6.264 10.031 10.135 9.870 10.310 8.331 10.771 6.957 10.427 15.574
Time 32 6.7 48.1 1.1 41.5 1569.1 567.3 1032.0 3866.8 13.9 42.8
PSNR 18.65 29.24 31.59 33.16 34.32 35.63 3591 3292 33.92 33.84 32.73 34.07 36.56
SSIM 0.365 0.733 0.795 0.878 0.908 0.936 0.937 0.887 0.894 0.901 0.890 0.892 0.938
FSIM 0.632 0.853 0.896 0.924 0.947 0.961 0.962 0.930 0.940 0.941 0.933 0.938 0.963
average ERGAS 719.25 182.08 158.06 111.25 96.88 83.62 81.53 107.32 105.40 111.28 101.52 126.39 77.14
SAM 40.265 13.030 10.943 8.504 6.358 5.800 5.132 5.639 6.614 7.873 7.058 9.173 5317
Time 22 58 50.2 0.8 43.6 1251.3 519.2 1043.0 3895.4 454 542

better or more competitive results compared with the existing
approaches, indicating the superiority of our method.

B. Experiments on HSI With Real Noise

We also illustrate the effectiveness of the proposed method
by comparing it against other approaches on two HSIs with
real noise. As real-world noisy HSIs generally miss the associ-
ated noise-free ground truth, we only visually and qualitatively
evaluate the denoising performance on real data.

1) Real Noisy HSI Datasets: Two representative real-world
data are selected for real noisy HSI datasets, including the air-
borne visible/infrared imaging spectrometer (AVIRIS) Indian

Pines dataset and the GaoFen-5 (GF-5) dataset. The spatial
size of the Indian Pines dataset is 145 x 145, and the spectral
dimension is 220. Due to the influence of atmosphere (water
absorption), the Indian Pines dataset is seriously degraded by
noise [as shown in Fig. 10(a)]. The spectral band of the origi-
nal GF-5 is 330, of which some bands are missing information.
Therefore, a sub-HSI with the size of 256 x 256 x 155 is
chosen for experiments. The GF-5 dataset is degraded by
mixed noise as shown in Fig. 12(a).

2) Experimental Results on Indian Pines Dataset: Fig. 10
shows the false color restoration results of the real Indian Pines
dataset. As shown in Fig. 10(a), noise seriously influences
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Fig. 10. Denoised results of the real Indian Pines dataset. The false color image is composed by bands (R: 220, G: 150, and B: 109). (a) Noisy. (b) LRTA.
(¢) TDL. (d) LRTDTYV. (e) HyRes. (f) FastHyDe. (g) GLF. (h) KBR. (i) LLRT. (j) WLRTR. (k) DS2DP. () NGmeet. (m) TLNLGS.
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Horizontal mean profiles of band 150 for the real Indian Pines dataset. (a) Noisy. (b) LRTA. (c) TDL. (d) LRTDTV. (e) HyRes. (f) FastHyDe.

(g) GLF. (h) KBR. (i) LLRT. (j) WLRTR. (k) DS2DP. (I) NGmeet. (m) TLNLGS.

U] (m)

Fig. 12. Denoised results of the real GF-5 dataset. The false color image is composed by bands (R: 96, G: 151, and B: 154). (a) Noisy. (b) LRTA. (c) TDL.
(d) LRTDTV. (e) HyRes. (f) FastHyDe. (g) GLF. (h) KBR. (i) LLRT. (j) WLRTR. (k) DS2DP. (1) NGmeet. (m) TLNLGS.

the image quality. LRTA, TDL, and LLRT can obtain satis-
factory denoising results in simulated noise, but they fail to
remove high-intensity noise in real data. Although LRTDTV
removes the noise thoroughly by the combination of TV
regularization and LRTA, the restored result is oversmoothed.
HyRes, FastHyDe, and GLF can remove obvious noise. KBR,
WLRTR, and NGmeet effectively remove the noise and pre-
serve most of the image details. However, since they ignore the
sparse prior of the nonlocal image, some stripe artifacts remain
in the denoised results as shown in the enlarged box. DS2DP
and our TLNLGS eliminate all noises as well as achieve better
visual quality.

Fig. 11 presents the mean profiles of band 150. From the
results, there are several impulses in the results of LRTA, TDL,
HyRes, FastHyDe, GLF, and LLRT due to incomplete noise
removal. Since the results of KBR, WLRTR, and NGmeet
generate stripe artifacts, the mean profiles occur with tiny fluc-
tuations. Moreover, the result of LRTDTV is oversmoothed.
In contrast, DS2DP and the proposed method yield better
illustration.

3) Experimental Results on GF-5 Dataset: Fig. 12 shows
the denoising results on the real GF-5 dataset. As shown in
the green enlarged close-ups, the results achieved by LRTA,
TDL, and HyRes contain visible noise. LRTDTYV, FastHyDe,
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Fig. 13.
(h) KBR. (i) LLRT. (j) WLRTR. (k) DS2DP. (I) NGmeet. (m) TLNLGS

[
Column

(m)

Vertical mean profiles of band 154 for the real GF-5 dataset. (a) Noisy. (b) LRTA. (c) TDL. (d) LRTDTV. (e) HyRes. (f) FastHyDe. (g) GLF.

TABLE IV
RUNNING TIME IN SECONDS OF THE TESTING METHODS FOR REAL DATASETS

Dataset LRTA TDL LRTDTV  HyRes FastHyDe GLF KBR LLRT WLRTR DS2DP NGmeet TLNLGS
Indian Pines 1.1 8.5 65.5 23 22 273 14139 1426.3 2737.6 5574.3 325 332
GF-5 1.8 32.8 125.2 6.1 5.4 84.4 25520 2903.6 4046.8 5934.8 74.6 76.0
TABLE V

GLF, KBR, WLRTR, and DS2DP obtain satisfactory visual
effect, removing the noise and preserving the image details,
but the stripe noise exists in the enlarged box. Although LLRT
removes the noise completely, the spectral information is
distorted. NGmeet removes the noise by smoothing the image
detail. The proposed TLNLGS method effectively removes the
mixture noise and preserves the image structures.

Fig. 13 shows the mean profiles of band 154 on the GF-5
dataset. Since LRTA and TDL cannot remove noise, the
mean profiles obtained by these methods are similar to the
noisy band. Due to the effects of stripes, there are several
fluctuations in the curves of the LRTDTYV, HyRes, FastHyDe,
GLF, WLRTR, and DS2DP methods. After denoising, these
kinds of fluctuations can be eliminated by other methods,
indicating better denoising performances. In summary, our
method can effectively remove noise and achieve competitive
denoising results compared with the state-of-the-art methods.

Table IV reports the running time of testing methods for
these two real datasets. LRTA, FastHyRes, and HyRes have
obvious speed advantages than other methods. However, the
proposed method achieves better denoising results than the
LRTA, TDL, HyRes, and FastHyDe methods with a low
computational cost. Therefore, the proposed method has a
tradeoff between the results and time cost.

C. Discussion

In this section, we first test the ablation study to illustrate
the effectiveness of exploring the nonlocal group sparsity
of reduced image under transform learning. Second, fixed
transform is used to demonstrate the necessity of adaptive
transform. Third, we provide the sensitivity analysis of several
parameters adopted in Algorithm 1, and then discuss how
they can be appropriately tuned in the experiment. Fourth,
comparison with the DL-based methods is presented to show
the competitiveness of the proposed method. Finally, the

QUANTITATIVE RESULT COMPARISONS OF ABLATION
STUDY ON THE PAC DATASET

o Index ~TLNLNN TLNLSR TNNLUT TLNLGS
PSNR 4179 39.47 4251 43.33
SSIM 0.988 0.983 0.990 0.992
10 FSIM 0.993 0.990 0.994 0.995
ERGAS 3054 39.25 28.13 25.45
SAM 3.369 3.280 2.680 2.363
PSNR  30.56 24.18 30.17 30.73
SSIM 0.890 0.712 0.881 0.894
100 FSIM 0.932 0.854 0.925 0.934
ERGAS 10907 22606 11384 10645
SAM 6.077 14.082 6.986 5.710
PSNR 3574 34.11 36.17 36.82
SSIM 0.961 0.932 0.965 0.970
(10, 100] FSIM 0.976 0.965 0.976 0.981
ERGAS  60.33 82.54 57.46 53.17
SAM 4218 7.701 5.124 3.939

numerical convergence is devolved. These discussions are
based on the PaC dataset under noise intensities ¢ = 10, 100,
[10, 100].

1) Ablation Study: To further analyze the superiority of
imposing group sparse regularization and different trans-
forms W;, we conduct an ablation study by replacing group
sparse regularization as the weighted nuclear norm and sparse
regularization, respectively, as well as using a unified trans-
form W. The substitutes of the weighted nuclear norm, sparse
regularization, and unified transform are denoted as TLNLNN,
TLNLSR, and TLNLUT, respectively. Table V lists the quan-
titative result comparisons of the ablation study on the PaC
dataset under three different noise variances. Since TLNLSR
ignores high strong correlation of the grouped image, the
results are lower than TLNLNN which considers the nonlocal
self-similarity of the reduced image. Although TLNLUT uses
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Fig. 14. Denoised results of the PaC dataset in the case ¢ = [10, 100]. The false color image is composed by bands (R: 68, G: 39, and B: 1). (a) Original.

(b) Noisy. (c) TLNLNN. (d) TLNLSR. (e¢) TLNLUT. (f) TLNLGS.

TABLE VI

QUANTITATIVE RESULT COMPARISONS OF FIXED
DCT TRANSFORM ON THE PAC DATASET

o method ~ PSNR  SSIM FSIM ERGAS SAM
DCTNLGS 3976 0983 0990 3803  3.655

10 TLNLGS 4333 0992 0995 2545 2363
DCTNLGS  27.64 0.798 0.884 15245  9.266

100 TLNLGS  30.73 0.894 0934 10645 5.710
DCINLGS  30.15 0876 0926 114.14  7.625

[10,100]  TLNLGS 36.82 0970 0981  53.17  3.939

unified transform W, it simultaneously explores the nonlocal
self-similarity and local smooth structure of the reduced image.
Therefore, TLNLUT achieves better results than TLNLNN
and TLNLSR in most cases. Compared with the variants,
TLNLGS obtains the best quantitative results. Fig. 14 presents
the visual comparison of Gaussian noise with ¢ = [10, 100].
From the results, we can observe that the proposed TLNLGS
achieves obvious improvement in terms of removing noises
and preserving the image details. In summary, the quantitative
and qualitative results demonstrate that these two important
components contribute significantly to the superiority of the
proposed method.

2) Necessity of Adaptive Transform: In the proposed model,
the adaptive transform matrices are learned from the data itself
to explore the group sparsity of grouped images. To illustrate
the necessity of adaptive transforms, we use fixed DCT as the
transform matrix (denoted as DCTNLGS method) to replace
the adaptive transform. Table VI lists the quantitative result
comparisons on the PaC dataset under three different noise
variances. From the results, we can find that the strategy of
adaptive transform is significantly better than that of the fixed
transform matrix.

3) Sensitivity Analysis of Parameter A: The regularization
parameter A is used to balance the fidelity term and the
regularization term. Fig. 15(a) shows the change in PSNR
value with different 4 values in the PaC dataset under three
noise cases. It can be observed that the denoising results
gradually become better with the increase in A4 and tend to
stabilize when A increased to 0.1. Therefore, we empirically
set 4 = 0.1 in all the experiments.

4) Sensitivity Analysis of Parameter t: The parameter
is used to constrain group sparsity regularization, which is
an important parameter. In our work, we set the parameter
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Fig. 15. Sensitivity analysis of all the parameters involved in the proposed
model. (a) Parameter A. (b) Parameter ¢ = ¢0. (c) Patch size p. (d) Patch
number d.

7 as o0, where ¢ is the noise level and changes during
iteration [41], and 6 is the tuning parameter. Fig. 15(b)
presents the PSNR change curve with different parameter 6.
It is observed that 6 needs to be set as lower values on
low noise variance, but when the noise variance increases,
a larger 6 should be selected. From the sensitivity analysis,
we empirically set § € [20, 100] in all the experiments.

5) Sensitivity Analysis of Patch Size p: The proposed
method has been considered the nonlocal self-similarity of
the reduced image, and thus, the patch size also affects the
denoising results. The sensitivity analysis of the patch size b is
presented in Fig. 15(c). It is observed that this parameter needs
to be carefully selected, and satisfactory results in all the cases
are achieved when p is set as 4. Therefore, we empirically set
p =4 in all the experiments.

6) Sensitivity Analysis of Patch Number d: Fig. 15(d) plots
the sensitivity analysis of patch number d, and it is obvious
that the highest PSNRs in three cases are achieved by the
proposed method when the patch number increased to 150,
which inspired us to fix d = 150 in all the experiments.

Through the sensitivity analysis of several parameters,
we set parameters 4 = 0.1, p = 4, and d = 150 in all
the experiments. Since the parameter 7 060 (where o
is estimated in each iteration [41]) is a threshold value for
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Fig. 16. Relative change values (|xcktt — Xk||p/\|Xk\|p) versus iteration number of the proposed method. (a) ¢ = 10. (b) ¢ = 100. (¢) ¢ = [10, 100].

IN SIMULATED EXPERIMENTS

TABLE VII
SETTING OF PARAMETER ¢ OF THE PROPOSED METHOD

o 2 10 30 80 100 [10,100] [30, 80] mixed
6 30 30 30 40 50 100 100 20
TABLE VIII

QUANTITATIVE RESULT COMPARISONS BETWEEN THE PROPOSED

TLNLGS WITH TWO SUPERVISED DL-BASED
METHODS ON THE WDC DATASET

o method  PSNR  FSIM  SAM
QRNN3D 4342 0982 2005

5 T3SC 4385 0981 1891
TLNLGS 4515 0997 1.891
QRNN3D 3504 0961  4.068

25 T3SC 3674 0967 3437
TLNLGS 3842 0988 3.437
QRNN3D 3172 0949  5.042

50 T3SC 3312 0954 4412
TLNLGS 3482 0975 5.042
QRNN3D  27.41 0910 7.448

100 T3SC 2948 0933 5615
TLNLGS 3108 0948 6.761
QRNN3D 3584 0961 4.125

(0,059 T3SC 3720 0969 3438
’ TLNLGS 3846  0.989  4.240

group sparsity coding, it needs to be selected according to the
noise intensity. In the simulated experiments, the parameter 6
is listed in Table VII. Empirically, the Gaussian noise with
different standard deviation ¢ for each band in real dataset.
Therefore, when the dataset (e.g., Indian Pines) is obviously
degraded by Gaussian noise, we set the parameters as A = 0.1,
p = 4,d = 150, and & = 100. For the GF-5 dataset, it is
degraded by mixed noise, and thus, the parameters are set as
A=0.1, p=4,d =150, and 6 = 20.

7) Comparison With Supervised Deep Learning-Based
Methods: Supervised DL has also been extensively presented
to HSI denoising [67], [68], [69], [70]. To show the competi-
tiveness of the proposed method with the supervised DL meth-
ods, two state-of-the-art methods 3-D quasi-recurrent neural
network (QRNN3D) [69] and trainable spectral-spatial sparse
coding (T3SC) [70] are chosen for comparison. For a fair com-
parison, the experimental settings including the ground-truth
WDC data (200 x 200 x 191) and Gaussian noise intensities

(¢ = 5,25,50,100, [0, 95]) keep the same as that of T3SC
in their article. The quantitative result comparison between
the proposed TLNLGS with two supervised DL methods is
listed in Table VIII. It can be seen that the proposed TLNLGS
outperforms the DL-based methods in terms of PSNR and
FSIM, and the T3SC method obtains better SAM results.
Therefore, compared with the supervised DL methods, our
method can also achieve competitive results.

8) Numerical Convergence: The solved BCD algorithm can
converge to a critical point. Fig. 16 shows the relative change
value versus the iteration number of the proposed method on
the PaC dataset. From the results, we can observe that the
relative change value monotonically decreases and gradually
tends to be zeros as the iteration number increases, indicating
the numerical convergence of the proposed method.

VI. CONCLUSION

In this article, we proposed a novel HSI denoising method
using the transform learning scheme with subspace repre-
sentation. The group sparsifying transform learning is used
to explore a discriminatively intrinsic nonlocal prior on the
reduced image, which can not only reflect the nonlocal
self-similarity and local spatial smooth structure of HSI with-
out adding more constraints but also improve the ability of
adaptive sparse representation than the fixed transform domain.
Moreover, to capture the global spectral correlation of HSI and
avoid the heavy computation burden with the spectral band
increase, subspace representation is introduced to project the
HST onto a relatively low-dimensional subspace. The proposed
method overcomes the barriers of the existing HSI denoising
approaches that directly designed different regularizations on
the original domain or fixed domain, which cannot explore the
characteristic of transformation. The experiments on the simu-
lated and real HSI noisy cases demonstrated the superiority of
the proposed method via comparing with the state-of-the-art
approaches.

It should be pointed out that the suggested idea on the
exploration of nonlocal group sparsity can also be adapted
to other HSI tasks such as superresolution and compressive
reconstruction. Another interesting future direction is to adopt
the DL methods to learn the transform matrix [71].
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