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Combining Low-Rank and Deep Plug-and-Play
Priors for Snapshot Compressive Imaging
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Abstract— Snapshot compressive imaging (SCI) is a promising
technique that captures a 3-D hyperspectral image (HSI) by
a 2-D detector in a compressed manner. The ill-posed inverse
process of reconstructing the HSI from their corresponding 2-D
measurements is challenging. However, current approaches either
neglect the underlying characteristics, such as high spectral
correlation, or demand abundant training datasets, resulting
in an inadequate balance among performance, generalizability,
and interpretability. To address these challenges, in this article,
we propose a novel approach called LR2DP that integrates the
model-driven low-rank prior and data-driven deep priors for
SCI reconstruction. This approach not only captures the spectral
correlation and deep spatial features of HSI but also takes advan-
tage of both model-based and learning-based methods without
requiring any extra training datasets. Specifically, to preserve
the strong spectral correlation of the HSI effectively, we propose
that the HSI lies in a low-rank subspace, thereby transforming
the problem of reconstructing the HSI into estimating the
spectral basis and spatial representation coefficient. Inspired
by the mutual promotion of unsupervised deep image prior
(DIP) and trained deep denoising prior (DDP), we integrate
the unsupervised network and pre-trained deep denoiser into
the plug-and-play (PnP) regime to estimate the representation
coefficient together, aiming to explore the internal target image
prior (learned by DIP) and the external training image prior
(depicted by pre-trained DDP) of the HSI. An effective half-
quadratic splitting (HQS) technique is employed to optimize the
proposed HSI reconstruction model. Extensive experiments on
both simulated and real datasets demonstrate the superiority of
the proposed method over the state-of-the-art approaches.
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I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are 3-D data with
dozens to hundreds of spectral bands which contain 2-D

spatial information and 1-D-specific spectral information on
the target scene. Due to their abundant spectral information,
HSIs have been widely applied in various areas, such as remote
sensing [1], [2], medical imaging [3], military [4], [5].

To capture 3-D HSI, common imaging systems scan the
scene along spatial and spectral dimensions with 1-D or 2-D
detectors which are time-consuming and memory-consuming.
Recently, compressive sensing theory-based imaging systems
called snapshot-hyperspectral compressive imaging (SCI) sys-
tems are popular. Compared to scanning-based technologies,
SCI has the advantages of low memory cost, low time
consumption, and low power dissipation. Among those SCI
systems [6], [7], [8], the coded aperture snapshot spectral
imaging (CASSI) system [9] is the representative one. The
first phase of CASSI encodes the 3-D HSI into a single
2-D snapshot measurement, and the second phase reconstructs
desirable HSI from the snapshot measurement via reconstruc-
tion algorithms. This article focuses on developing an efficient
reconstruction method for the second phase.

To reconstruct high-quality HSIs from the correspond-
ing snapshot measurements, various reconstruction algorithms
have been proposed. These approaches can be broadly divided
into three categories: model-based, learning-based, and hybrid-
based approaches. Model-based approaches utilize handcrafted
priors, such as sparsity [10], [11], [12], total variation
(TV) [13], [14], low-rank [15], [16], [17], and non-local
self-similarity (NSS) [18], [19], [20], and then design an iter-
ative optimization algorithm for SCI reconstruction. Overall,
model-based approaches enjoy good interpretability and gen-
eralization since they consider the physical prior characteristic
and imaging model of desired HSI. However, handcrafted
priors lack an adaptive ability to highly complex features.
To remedy this weakness, learning-based methods attempt
to learn the mapping function from 2-D measurement to
3-D HSI by various parameterized neural networks, such
as convolutional neural network (CNN) [21], [22], spatial-
spectral attention network [23], [24], and transformer network
[25], [26]. Although promising results have been achieved,
learning-based methods demand sufficient training data, which
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Fig. 1. Overall architecture of LR2DP. (a) It consists of three main stages: 1) low-rank subspace decomposition; 2) spatial representation coefficient
reconstruction by two deep priors; and 3) HSI reconstruction from the subspace and spatial representation coefficient. (b) Network architecture of DIP.
(c) Network architecture of DDP.

is expensive to acquire for network pretraining. Moreover, the
network trained under specific training datasets cannot be well
applied to other imaging systems that are not included in the
training data.

Recently, to address the issue of HSI training data, hybrid-
based methods integrate deep priors depicted by pre-trained
deep network or untrained deep network and handcrafted
priors into the plug-and-play (PnP) framework for SCI recon-
struction [27], [28], [29]. Since these methods do not require
extra training data and incorporate an imaging model, thus it
is a good trade-off for reconstruction performance and gener-
alization. However, most of the hybrid-based methods usually
directly design the deep priors for HSI itself, while ignoring
the discriminatively intrinsic spectral low-rank structure of
the HSI, which can promote SCI reconstruction with accurate
spectral information. Moreover, the rough combination of pre-
trained or untrained deep priors with handcrafted priors may
ignore the potential cooperation between deep priors which
depict different target features.

To address these issues, we formulate the SCI reconstruction
into a popular PnP framework (see Fig. 1), which aims at
taking the hybrid advantages of model-based and learning-
based methods and making these strengths promote each
other. First, to preserve the strong spectral correlation of the
HSI effectively, we design model-based low-rank subspace
representation (LRSR) to project the high-dimensional HSI
into a low-dimensional spectral subspace. As a result, the
HSI reconstruction problem is transformed into the estima-
tion of spectral basis and spatial representation coefficient,
which will usually be more precise than reconstructing the
original HSI directly since the number of unknown variables
is significantly reduced. Moreover, the model-driven low-rank
prior can inherit the established advantages of model-based
approaches, such as high interpretability and excellent general-
ization ability. Second, it is different from existing methods to
regularize the original HSI directly by employing handcrafted

prior or designing an unsupervised deep image prior (DIP)
or pre-trained deep denoising prior (DDP) alone, we integrate
the unsupervised DIP and the pre-trained deep denoiser to
explore the internal and external structure of the representation
coefficient, respectively, which is more stable and reasonable
since the subspace of representation coefficient is the same
as the one where spanned by original HSI. Especially, the
internal structural features are learned from the data itself
via the DIP network, while the external features are obtained
by pre-trained deep denoiser from diverse additional datasets.
The advantage of data-driven deep priors we designed is that
they can not only greatly reduce the overall error induced
by the model-driven handcrafted priors but also enjoy the
power of deep neural networks and do not require any extra
training data. Finally, considering that model-driven and data-
driven priors could promote each other, we propose a novel
method (called LR2DP) by combining the low-rank and deep
priors to enhance SCI reconstruction with the crucial of
strong interpretability, superior generalization ability, and high
reconstruction capacity.

Fig. 2 presents an example to illustrate that the model-
driven low-rank prior and data-driven deep priors are indeed
complementary to each other. We can observe that the overall
structure of the image can be reconstructed when only DIP is
used, but additional noise emerges and spectral information
is lost [see Fig. 2(b)]. When DDP is introduced into DIP,
the performance is improved since the noise has disappeared.
However, the result reconstructed by these two deep priors is
over-smoothed [see Fig. 2(c)]. Similarly, the low-rank prior
can promote DIP to preserve the spectral information but
the artifacts exist in the image [see Fig. 2(d)]. In contrast,
the proposed method, which incorporates low-rank prior and
two deep priors, reconstructs the overall structure without
additional noise or blur and effectively preserves the spectral
information [see Fig. 2(e)]. The major contributions of this
article can be summarized as follows.
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Fig. 2. Illustration of SCI reconstruction results in which model-driven low-rank prior and data-driven deep prior promote each other. (a) Two-dimensional
measurement. (b) Using DIP alone (PSNR: 37.64 dB). (c) Combining DIP with DDP (PSNR: 37.30 dB). (d) Combining DIP with low-rank prior (PSNR:
40.10 dB). (e) Proposed method (PSNR: 40.40 dB). (f) Ground truth.

1) We propose a novel method that combines the advan-
tages of model-based and learning-based methods for
SCI reconstruction so that the strong spectral correla-
tion and spatial structure of the HSI are captured by
model-driven low-rank prior and data-driven deep priors,
respectively.

2) The unsupervised DIP and pre-trained DDP are designed
as deep priors to regularize the reduced-dimensionality
representation coefficient, not HSI itself, which can
effectively explore deep internal and external features
of HSI without extra training datasets.

3) An efficient optimization framework half-quadratic split-
ting (HQS) is designed to solve the proposed coefficient
reconstruction model. A series of experiments on both
simulated and real datasets demonstrate that the pro-
posed method achieves state-of-the-art performance.

The rest of this article is organized as follows. We intro-
duce the related works of SCI reconstruction in Section II.
Section III introduces the notations and the problem formu-
lation of CASSI. The proposed SCI reconstruction method is
presented in Section IV. Section V shows the experimental
results and detailed discussion of the proposed method, and
the conclusion is drawn in Section VI.

II. RELATED WORK

Recently, the SCI reconstruction methods have been widely
researched, which are mainly divided into three direc-
tions: model-based, learning-based, and hybrid-based methods.
In this section, we briefly review the related works.

A. Model-Based Methods

Due to the ill-posed inverse problem of SCI reconstruction
from a snapshot measurement, model-based methods design
different handcrafted priors to exploit the spatial-spectral struc-
ture of the desired HSI and regularize the inverse problem for
a stable solution. The TV regularization has been employed
to preserve the spatial piecewise smoothness of HSI in SCI
reconstruction [13], [14]. The sparsity prior achieves a better
result than TV regularization since it describes the sparse
characteristic of HSI in a redundancy dictionary or fixed trans-
form domain [10], [11]. To explore the spatial, spectral, and
nonlocal correlations of HSI, low-rank matrix/tensor approxi-
mations have been designed for SCI reconstruction [16], [17],
[18], [19]. Overall, these model-based optimization algorithms
are handcrafted based on prior knowledge, so they are usually

interpretable but they are not always sufficient to capture the
characteristics in various spectral images.

B. Learning-Based Methods

Learning-based methods have been employed for SCI
reconstruction via learning the end-to-end function from the
observed measurement to the desired HSI [24], [30], [31],
[32], [33], [34]. The sophisticated CNN is employed to
explore spatial-spectral correlations of HSI from sufficient
external datasets for SCI reconstruction [30]. To address the
deficiencies in long-range dependency and content indepen-
dence between images and convolution kernels, the attention
mechanism is introduced in CNN for SCI reconstruction. TSA-
Net [24] designed a CNN with spatial-spectral self-attention
to tackle each dimension sequentially for SCI reconstruction.
Recently, with the relevancy between computer vision and
natural language processing, the transformer and recurrent
neural networks have been introduced into SCI reconstruction
tasks. Cai et al. [33] proposed a mask-guided spectral-wise
transformer for SCI reconstruction, which can capture the
long-range inter-spectra dependencies. Even though these
learning-based methods achieve excellent reconstruction per-
formance, they all demand sufficient training samples for
supervised learning, which is difficult in the research fields
related to HSI. Moreover, each trained network is usually
dedicated to one specific imaging device, as the imaging
device changes, they need to retrain a new network, which
constrains the generalization of this kind of method.

C. Hybrid-Based Methods

To cope with the problem of insufficient HSI training
data, hybrid-based methods [27], [28], [35], [36] try to com-
bine conventional physical model and PnP priors (pre-trained
or untrained deep denoiser networks) for SCI reconstruc-
tion, which inherits the advantages of model-based and
learning-based methods. To balance the speed, accuracy, and
generalization for SCI reconstruction, Yuan et al. [36] pre-
sented an efficient PnP-GAP algorithm by using various
denoisers, such as learning-based FFDNet. Since using a single
pre-trained denoiser alone cannot obtain satisfactory results,
FFDNet-TV [28] combined the FFDNet and TV denoisers to
improve the existing hybrid-based algorithms for SCI recon-
struction. As the pre-trained deep denoiser FFDNet is learned
from nature images, it may not be able to represent the HSI.
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To address this challenge, PnP-DIP [27] developed a self-
supervised neural network that integrates DIP into the PnP
regime for SCI reconstruction. Overall, hybrid-based methods
integrate the implicit deep denoisers or explicit handicraft
denoisers in the regularization model, which can improve
the interpretability and generalization of SCI reconstruction.
Despite the effectiveness of this kind of method, they usually
directly design the PnP priors to learn HSI itself but ignore the
discriminatively intrinsic low-rank structure of the HSI, which
limited the improvement of spectral reconstruction quality.
Moreover, the usual combination of handcrafted denoisers
or deep denoisers lacks further exploration of the spatial
information of HSI.

Inspired by the effectiveness and generalization of PnP
priors, we have attempted to involve the advantages of hybrid-
based methods in the coded SCI reconstruction and remedy the
deficiencies to effectively boost the reconstruction quality.

III. NOTATIONS AND PROBLEM FORMULATION

A. Notations

In this article, scalars, vectors, matrices, and tensors are
represented by lowercase and uppercase (b, B ∈ R), boldface
lowercase (x ∈ Rb), boldface capital letter (X ∈ RI×J ),
and calligraphic letter (X ∈ RI1×I2×···×In ), respectively. The
element value of X in location (i1, i2, . . . , in) is represented
by X (i1, i2, . . . , in). The mode-k unfolding of tensor X ∈

RI1×I2×···×In is denoted as X(k) ∈ RIk×I1 Ik−1,...,Ik+1 In . The
frontal, lateral, and horizontal slices of a 3-D tensor X
are denoted as X (:, :, i3), X (:, i2, :), and X (i1, :, :), respec-
tively. The mode-k product of a tensor X ∈ RI1×I2×···×In

and a matrix U ∈ RJ×Ik is defined as Y = X ×k U,
where Y ∈ RI1×I2×···×Ik−1×J×Ik+1×···×In and Yii ,...,ik−1, j,ik+1,...,in =∑Ik

ik=1 Xi1,i2,...,in · U j,ik . For the Frobenius norm of X , it is
denoted as ∥X∥F = 6i1,i2,...,in (xi1i2,...,in )

(1/2).

B. Problem Formulation of CASSI

There are two popular types of imaging systems in CASSI,
i.e., SD-CASSI employing a single disperser encoded in the
spatial domain and DD-CASSI encoded in both spatial and
spectral domains [37]. The imaging principle of CASSI is
presented in Fig. 3, which encodes the 3-D hyperspectral
cube onto a 2-D measurement. The key imaging processes
of SD-CASSI include the following steps: 1) the 3-D cube is
modulated by a physical mask; 2) it is dispersed by the prism;
and 3) the coded cube is integrated into a 2-D measurement
along the spectral dimension. Mathematically, X ∈ Rh×w×B

denotes the target HSI to be captured, which is modulated by
the mask M ∈ Rh×w, where h, w, and B represent the height,
width, and number of bands, respectively, then we can obtain

X ′(:, :, b) = X (:, :, b) ⊙ M, (b = 1, 2, . . . , B) (1)

where X ′(:, :, b) represents the band b of modulated tar-
get HSI, ⊙ represents the element-wise multiplication. X ′

becomes tilted along the spatial vertical direction after it passes
the disperser. We use X ′′

∈ R(h+d(B−1))×w×B to denote the
tilted HSI, where d denotes the shifting step, and we have

X ′′(u, v, b) = X ′(h + d(λb − λa), w, b) (2)

Fig. 3. Illustration of two coded imaging principles in CASSI.
(Top) SD-CASSI. (Bottom) DD-CASSI.

where (u, v) represents the coordinate system on the detector
plane, λb and λa represent the wavelength of the bth band
and the reference wavelength, respectively. Therefore, we can
obtain the final 2-D measurement Y ∈ R(h+d(B−1))×w by

Y =

B∑
b=1

X ′′(:, :, b) + N′′ (3)

where N′′
∈ R(h+d(B−1))×w denotes measurement noise gener-

ated in the imaging process.
For the DD-CASSI, the target 3-D HSI is first spectrally

dispersed by the prism and modulated by the physical mask.
Then the modulated HSI goes through the relay lens and is
dispersed by another inverse prism for spectral gathering. Sim-
ilar to (3), The final captured 2-D compressive measurement
in DD-CASSI can be represented as follows:

Y =

B∑
b=1

X ′(:, :, b) + N′ (4)

where Y ∈ Rh×w and N′
∈ Rh×w represent 2-D compressive

measurement and noise, respectively.
For convenience, we denote the whole imaging process of

two CASSI imaging processes as follows:

Y = H(X ) + N (5)

whereH(·) : Rh×w×B
→ R(h+d(B−1))×w or Rh×w is an operator

that contains whole imaging process.

IV. PROPOSED METHOD

The estimation of HSI X from the measurement Y is
an ill-posed problem. Model-based methods reconstruct the
HSI by exploring the prior knowledge of desired X . The
reconstruction model can be formulated as follows:

arg min
X

1
2
∥Y −H(X )∥2

F + λ R(X ) (6)

where the first term is the data-fidelity term, R(X ) is the
regularization term specifying the prior knowledge of HSI,
and λ is a positive regularization parameter. The handcrafted
priors, such as TV [13], low-rank [16], and NSS [18], [38],
[39], can be employed to regularize X . However, these hand-
crafted priors may not be able to explore the deep features of
HSI. Recently, deep neural networks can capture the inherent
characteristics of HSI by a large number of training datasets
or degraded measurement itself. Therefore, the deep priors
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Fig. 4. LRSR of the HSI.

are introduced to the reconstruction model in (6) for SCI
reconstruction [27], [28]. Although these methods perform
satisfactory results, few researchers consider both model-
driven low-rank prior and data-driven deep priors for SCI
reconstruction.

A. Low-Rank Prior of HSI

The global spectral correlation is an intrinsic prior that exists
in HSI, which has been widely used in different applications,
such as compressive hyperspectral imaging [17], super-
resolution [40], [41], [42], and restoration [43], [44], [45].
To capture the global spectral correlation of HSI, the LRSR
is introduced to approximate it as follows:

X = Z ×3 E (7)

where E ∈ RB×l (l ≪ B) denotes the orthogonal basis matrix
capturing the common subspace of different spectral signa-
tures, and Z ∈ Rh×w×l is the subspace (spatial) representation
coefficient. Fig. 4 presents the global spectral correlation of
HSI via LRSR.

Using the low-rank subspace decomposition, the HSI recon-
struction can be transformed into the spectral basis and
subspace coefficient estimation. Since the ground-truth X is
unknown, it is difficult to learn the spectral basis directly
from (7). To obtain the spectral basis, we use the singular
value decomposition (SVD) of X̂ from the previous iteration
to learn the approximation solution [46]. Given the result of X̂ ,
we obtain the spectral basis as follows:

E = U(:, 1 : l) (8)

where U is the left singular matrix of X̂(3).

B. Combining Low-Rank and Deep PnP Priors

With the spectral basis E known, we need to further estimate
the spatial coefficient Z . Based on the maximum a posteriori
(MAP) estimation, we can obtain the following coefficient
estimation model by combining (6) and (7):

arg min
Z

1
2
∥Y −H(Z ×3 E)∥2

F + λ R(Z) (9)

where R(Z) is the regularization term describing the prior
of Z . With the column orthogonal constraint of subspace
basis E, the spatial characteristic of X in the image domain can
be transformed to the subspace coefficient domain. Thus, the
regularization term R(X ) in (6) is transformed as R(Z) in (9).
There are many handcrafted priors can be used to constrain

Z , e.g., BM3D [46], TV [47], NSS [48]. However, they lack
an adaptive ability to capture different spatial features in HSI.

Recently, deep neural networks devote to adaptively learning
the image prior. To take full advantage of the ability of
neural networks to learn priors, we introduce the unsupervised
DIP [49], [50], [51] to regularize the coefficient Z . The
major advantage of DIP is that it does not require ground
truth during the learning and can exploit the internal target
image prior. By incorporating the DIP prior and absorbing the
regularization R(Z), the coefficient reconstruction model is
suggested as follows:

arg min
2

1
2
∥Y −H(F2(E) ×3 E)∥2

F (10)

where F2(·) denotes the network of DIP, 2 is the network
parameters, and E is a random noise input into the network
whose size is the same as Z . It is worth noting that the
optimization of Z is transformed to learn the network param-
eters 2. Then, an approximation solution of Z is computed
as Z = F2(E).

It seems that model in (10) can achieve satisfactory recon-
struction results since it simultaneously utilizes the spectral
low-rank prior and spatial deep prior. However, the perfor-
mance of model in (10) still has room for improvement since
the result of DIP is limited for learning multidimensional
data [52]. Moreover, as the iterative termination criteria of
DIP is blind, it will introduce extra noises or blurred features.
To improve the performance of model in (10), extra regu-
larization can be introduced to promote the performance of
DIP, such as handcrafted TV prior [28]. Instead of using the
handcrafted prior, we employ the prior learned from extensive
images to regularize the coefficient. Therefore, motivated by
the effectiveness of the PnP framework, the well-trained DDP
is employed to represent the external feature of the coefficient.
This leads to the final reconstruction model as follows:

arg min
2

1
2
∥Y −H(F2(E) ×3 E)∥2

F + λφ(F2(E)) (11)

where φ(·) is the regularization term describing the external
deep features of the representation coefficient.

C. Efficient Optimization

The objective in (11) is hard to directly optimize, due to the
network parameters 2 coupled in the implicit regularization
term. To obtain the solution for the model in (11), the HQS
algorithm [53] is employed for its simplicity and fast conver-
gence. By introducing an auxiliary variable U , the problem of
(11) is approximately equivalent to the following problem:

arg min
2,U

1
2
∥Y −H(F2(E) ×3 E)∥2

F + λφ(U)

+
β

2
∥U − F2(E)∥2

F (12)

where β is the penalty parameter. Based on the HQS
algorithm, the problem in (12) can be solved by alternately
iterating two subproblems 2 and U .
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1) 2-Subproblem: The subproblem of (12) with respect to
2 is formulated as follows:

arg min
2

1
2
∥Y −H(F2(E) ×3 E)∥2

F +
β

2
∥U − F2(E)∥2

F .

(13)

Obviously, the 2 subproblem is a quadratic minimization
problem, which can be regarded as a generalized form of
the DIP framework [49]. In our implementation, we adopt
a similar UNet structure for optimizing the parameter 2.
The repeated convolution modules are used to design the
sampling layers, where each downsampling layer consists of
3 × 3 strided convolution, and the upsampling layer consists
of 3 × 3 transposed convolution. Moreover, we employ
P-Relu instead of Relu as an activation function in the last
upsample layer because the values in the coefficient images
are not necessarily all positive numbers. To reduce the network
parameters, we discard the skip connections and decrease the
number of feature channels. Moreover, the loss function of
the classic DIP framework usually only has the fidelity term.
In this particular case, the proximity regularization that forces
F2(E) to be close U is provided. The whole formula in (13)
is employed as the loss function instead of just the fidelity
term, which provides a stable and robust effect to the network
optimization.

2) U-Subproblem: The optimization of U subproblem can
be solved by the following minimization problem:

arg min
U

λφ(U) +
β

2
∥U − F2(E)∥2

F . (14)

Inspired by the spirit of the PnP framework, the problem
of (14) can be regarded as denoising of F2(E) with known
Gaussian noise level of σ 2

= (λ/β). The unsupervised DIP
network is employed to learn the internal feature of the
subspace coefficient. To adequately explore the external char-
acteristics, we introduce DDP, depicted by the pre-trained deep
denoiser which is trained from sufficient images, to effectively
capture the externally shared image structures and remove
the noise. Many popular pre-trained deep denoisers can be
selected to solve the denoising problem, such as DnCNN [54]
and FFDNet [55]. In this article, we choose a well-trained
deep denoiser named DRUNet [56] to depict the DDP as
the denoising engine [see Fig. 1(c)], which is demonstrated
as more efficient than current deep denoisers like FFDNet.
Especially, the generalization of DRUNet is better than other
deep denoisers since it is suitable for a wide range of seen
and unseen noise levels. Thus, although it is difficult to
select proper parameters λ and β which ensures satisfactory
results and proper noise level σ , DRUNet can handle this
issue. DRUNet employs the UNet with skip connections as
its backbone which contains four stages of upscaling and
downscaling. In each scale, the layers are composed of four
successive residual blocks and one scaling layer, in which the
downscaling layer consists of 2 × 2 strided convolution and
the upscaling layer consists of 2 × 2 transposed convolution.
Then, the solution of (14) can be formulated as follows:

Û (:, :, p) = DRUNet(Z(:, :, p), σcp ), (p = 1, 2, . . . , l)

(15)

where Z(:, :, p) is the pth slice of F2(E), and σcp is the
calculated noise level of pth slice in the coefficient.

Since each slice of the coefficient is not a natural image,
we first need to scale the values of each slice into the same
range. Each slice of coefficient into [0, 1] is scaled by the
min-max scaling, and the noise level is scaled as well

Û (:, :, p) = DRUNet(Ẑ(:, :, p), σ̂ cp ), (p = 1, 2, . . . , l)

Ẑ(:, :, p) = siZ(:, :, p) + di , σ̂ cp = siσcp (16)

where Ẑ is the normalized F2(E), σ̂ cp is the normalized
coefficient, and si = 1/(max(Z(:, :, p)) − min(Z(:, :, p)),
di = −si × min(Z(:, :, p)). Finally, we need to scale the
updated results back.

We summarize the proposed LR2DP method for SCI recon-
struction in Algorithm 1. To perform Algorithm 1, we need
to learn the subspace basis from X in advance. Following the
initialization setting of DeSCI, we also employ the GAP-TV
to initialize the variables X because of its high efficiency, and
the variable U is initialized as X ×3 ET .

Algorithm 1 Proposed LR2DP Method for SCI
Reconstruction
Input: Measurement Y, operator H.
Parameter: Parameters λ and µ, subspace l.
Output: Reconstructed X .

1: Initialize: β, 2, X0, U , k = 0, and t = 0.
2: while not converged do
3: k = k + 1.
4: Learn the subspace E by (8).
5: while t ≤ tmax do
6: t = t + 1.
7: Update network parameters 2 via DIP by (13).
8: Update U via DRUNet denoiser by (16).
9: Update β = µ ∗ β.

10: end while
11: Update desired HSI via X = F2(E) ×3 E.
12: Check the convergence condition ∥X k

−X k−1
∥F

∥X k−1
∥F

≤ ϵ and
k ≤ kmax.

13: end while

V. EXPERIMENTS

In this section, we conduct experiments on simulated data
and real data for evaluating the performance of the pro-
posed LR2DP. Several state-of-the-art methods are employed
for comparison, including two model-based methods: GAP-
TV [13] and DeSCI1 [18], and two hybrid-based methods:
TV-FFDNet2 [28] and PnP-DIP3 [27]. For their parameter
selection of these methods, we carefully follow the author’s
suggestions in their papers to guarantee optimal results.

A. Simulated Experiments

For a comprehensive evaluation, two coded imaging sys-
tems SD-CASSI and DD-CASSI are conducted to verify the
effectiveness of our method.

1https://github.com/XiaoYangLiu-FinRL/DeSCI
2https://github.com/ucker/SCI-TV-FFDNet
3https://github.com/mengziyi64/CASSI-Self-Supervised
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TABLE I
SD-CASSI AND DD-CASSI QUANTITATIVE RESULTS OF ALL COMPARISON METHODS ON THE CAVE, HARVARD, AND ICVL DATASETS

1) Datasets: To show the flexibility of the proposed
method, we test the SD-CASSI and DD-CASSI experiments
on five public datasets, including three benchmark datasets
from a computer version society, i.e., CAVE,4 Harvard,5

4https://www1.cs.columbia.edu/CAVE/databases/multispectral/
5http://vision.seas.harvard.edu/hyperspec/

and ICVL,6 and two popular datasets from remote sensing
HSI, i.e., Washington DC Mall (WDC) and Pavia University
(PaviaU). The CAVE dataset consists of 32 hyperspectral
scenes and 31 wavelength bands from 400 to 700 nm with
a step of 10 nm whose band sizes are each 512 × 512.

6https://icvl.cs.bgu.ac.il/hyperspectral/
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Fig. 5. Reconstruction results of all comparison methods on CVAE-Toy, Harvard-Imgc4, and ICVL-Bgu image for SD-CASSI, respectively. The first,
third, and fifth rows are the visual results, and the second, fourth, and sixth rows are the corresponding absolute error maps between the ground truth and
reconstructed images. The false color images are composed of bands (R: 28, G: 15, B: 4), (R: 26, G: 12, B: 5), and (R: 29, G: 14, B: 7), respectively.

The Harvard dataset consists of 50 hyperspectral images
(HSIs) of indoor and outdoor scenes with 31 bands from 420 to
720 nm at a step of 10 nm, and the spatial size of this dataset is
1040 × 1392. Meanwhile, the ICVL dataset contains 201 real-
world scenes, and the spatial and spectral sizes of each scene
are 1300 × 1392 and 31 spectral bands collected from 400 nm
to 700 nm in a 10 nm step, respectively. We severally choose
five scenes from these three datasets as the ground-truth data
and crop their spatial resolution into 512 × 512. The original
WDC contains 1208 × 307 pixels and 191 spectral bands
acquired by the HYDICE sensor, and the PaviaU contains
610 × 340 spatial size with 103 spectral bands acquired by
the ROSIS-03 optical sensor over the area of Pavia University.
For convenience, we cropped the corresponding subimage with
256 × 256 × 31 to conduct the experiments, where 31 bands

are extracted from the continuous band 11 to band 41 in WDC
and PaviaU.

2) Quantitative Metrics: Five quantitative image quality
metrics are employed to thoroughly evaluate the performance
of all the competing methods [43], including peak signal-
to-noise ratio (PSNR), relative dimensionless global error
in synthesis (ERGAS), structure similarity (SSIM), feature
similarity (FSIM), and spectral angle mapper (SAM). PSNR,
SSIM, and FSIM are employed to measure spatial structure
reconstruction, while ERGAS and SAM measure spectral
fidelity. Generally, the higher values of PSNR, SSIM, and
FSIM and smaller results of ERGAS and SAM suggest a better
reconstruction accuracy.

3) Experimental Results on CAVE, Harvard, and ICVL
Datasets: Table I lists the quantitative results for SD-CASSI
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Fig. 6. Reconstruction results of all comparison methods on WDC and PaviaU datasets for DD-CASSI, respectively. The first and third rows are the visual
results, and the second and fourth rows are the corresponding absolute error maps between the ground truth and reconstructed images.

and DD-CASSI over five scenes on the CAVE, Harvard,
and ICVL datasets. We highlight the best results for each
index in bold. From the Table I, we can find that hybrid-
based methods are usually superior to model-based methods.
Although TV-FFDNet and PnP-DIP employ the PnP denoiser
as the prior for reconstruction, none of them take into account
the spectral correlation of HSI. Therefore, the results of the
SAM index in most cases are significantly inferior to the
proposed LR2DP method. Moreover, the competing methods
design the regularization to the HSI itself, while the proposed
method introduces the spatial deep priors to the reduced-
dimensionality representation coefficient, which leads to a
better reconstruction of the spatial information. In summary,
comparing the quantitative results of different methods on the
same imaging system, our method outperforms the existing
methods in most cases and metrics. This reveals that our
method can effectively preserve the spatial structures and
spectral signatures of the reconstructed HSI, demonstrating
the capability of LR2DP to utilize the low-rank characteristics
of HSI and verifying the effectiveness of mutual promotion
between unsupervised deep prior and pre-trained deep prior.

To provide the qualitative comparison, we respectively
choose one representative scene from CAVE, Harvard, and
ICVL datasets in SD-CASSI to show the reconstructed results.
Fig. 5 shows the reconstructed false color images and cor-
responding residual maps of three scenes before and after
reconstruction. To compare the local details of the recon-
structed images, we present zoomed-in views of an image area

represented by green rectangles. From the results, we can find
that DeSCI reconstructs the global image structures roughly,
but the local details are lost. TV-FFDNet and PnP-DIP ignore
the spectral correlation of HSI, thus the spectral signature of
the reconstructed image is distorted. Moreover, TV-FFDNet
blurs the image by introducing handcrafted TV regularization.
In contrast, the proposed LR2DP effectively reconstructs the
spatial details as well as preserves the spectral information of
the original image. Although the proposed method employs the
GAP-TV as initialization, we can find that the reconstruction
results of GAP-TV deviate greatly from the ground truth
image. Therefore, the better reconstruction results are because
of our method rather than the effectiveness of initializa-
tion. The residual images show the average absolution errors
between the reconstruction result and the ground truth. From
the error maps, we can find that LR2DP achieves the minimum
reconstruction errors, indicating better reconstruction results.

4) Experimental Results on WDC and PaviaU Datasets:
To further validate that the proposed method can be applied
to the reconstruction of remote sensing HSIs, two popular
remote sensing HSIs are chosen for the SD-CASSI and
DD-CASSI experiments. Table II presents the quantitative
results of different reconstruction methods on the two datasets
using the SD-CASSI and DD-CASSI measurements. From the
results, hybrid-based methods still achieve better results than
model-based ones in most cases, indicating the effectiveness
of deep PnP priors over handcrafted priors. PnP-DIP obtains
better results than TV-FFDNet, demonstrating the advantage
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Fig. 7. Reconstruction results of all comparison methods on the real Bird dataset, the false color image is composed by bands (R: 24, G: 11, B: 4).

TABLE II
SD-CASSI AND DD-CASSI QUANTITATIVE RESULTS OF ALL

COMPARISON METHODS ON THE WDC AND
PAVIAU DATASETS

of the unsupervised DIP prior over pre-trained deep prior.
In contrast, we can easily find that our LR2DP achieves
the best performance among all the competing methods in
all evaluation metrics, again illustrating the superiority of
exploiting the model-driven low-rank property of HSIs and
data-driven deep priors.

We also provide some visualization results of different
methods in Fig. 6, which depicts the SCI reconstruction results
of the concerned methods and corresponding error maps on
two remote sensing HSIs for DD-CASSI. It can be observed
from Fig. 6 that model-based methods fail to reconstruct the
serious spatial structure in the WDC dataset. TV-FFDNet
and PnP-DIP improve the results, but they are still blurred.
The reconstructed results from our method provide the best,
with much more detailed information compared to the ground
truth. The absolute error maps between ground truth and
reconstructed results of scenes are also much closer to the
ground truth, verifying that our method obtains higher spatial
accuracy. From the SAM index in Table II, the proposed
method still achieves optimal values, demonstrating that our
method can provide a higher spectral fidelity.

B. Real Experiments

To further show the effectiveness of the proposed method,
we test the experiment on real snapshot-hyperspectral

Fig. 8. Spectral curves of the real Bird data. (Left) Spatial position (118 396)
and (Right) spatial position (394 750).

compressive imaging data, i.e., the Bird data.7 The Bird
data consist of 24 spectral channels with a spatial size of
1021 × 703. The reconstructed results of all comparison
methods are shown in Fig. 7. We present the RGB reference
image of the Bird dataset to compare the spatial informa-
tion of these reconstructed results. GAP-TV introduces some
noises in the reconstruction result, and DeSCI produces an
artifact, resulting in the loss of spatial details. PnP-DIP and
TV-FFDNet obtain satisfactory results, but some details are
blurred. In contrast, the proposed method can reconstruct
accurate spatial structures, leading to better reconstruction
quality.

To compare the spectral information of reconstructed
results, we plot the spectral signatures of two spatial positions
by different methods in Fig. 8. It can be observed that our
method can reconstruct more accurate spectral signatures than
other methods, which illustrates better spectral information
preservation ability. In summary, our method has the potential
to be applied to real SCI reconstruction.

C. Ablation Study and Parameter Analysis

1) Ablation Study: To demonstrate the effectiveness of
mutual promotion between the model-driven LRSR and two
data-driven deep PnP priors (i.e., unsupervised DIP [49] and
pre-trained DDP [56]), the ablation study is presented. We con-
duct the ablation experiments for the SD-CASSI system on
five scenes from the CAVE dataset. Table III lists the average
quantitative results over the CAVE dataset on five scenes. The
result of DIP is employed as the baseline, then we incorporate
the DDP, LRSR, and both of them (proposed LR2DP method)
to the baseline, respectively. From Table III, we can find that
DDP and LRSR can significantly promote the performance of
DIP. LR2DP combines the benefits of the model-driven low-
rank prior, data-driven DIP, and pre-trained DDP to achieve
the best result, demonstrating that our method can enable these
priors to promote each other, and thereby achieve much better

7https://github.com/XiaoYangLiu-FinRL/DeSCI
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Fig. 9. PSNR curves versus the different parameters. (a) Subspace dimension l. (b) Regularization parameter λ . (c) Penalty parameter β.

TABLE III
QUANTITATIVE RESULTS OF ABLATION STUDY ON CAVE DATASET

results. Visually, Fig. 2 shows the ablation study conducted
on CAVE-Egyptian, which illustrates the reconstruction effect
benefits from the above priors.

2) Parameter Analysis: Subsequently, we analyze the
parameter selection of the proposed LR2DP model. There
are three key parameters, including subspace dimension l,
regularization parameter λ , and penalty parameter β, in our
method. To illustrate the influence of each parameter, we plot
the PSNR change curves with different parameters shown in
Fig. 9. From Fig. 9(a), we can find that satisfactory results of
subspace dimension are achieved in the range of [9, 11]. Thus,
the subspace dimension l is set as [9, 11] in all experiments,
which can represent a low dimensional spectral subspace
and preserve sufficient spatial information of HSI. For the
parameter λ , it is relatively robust because satisfactory results
can be achieved by choosing different λ in a wide range,
and we set λ = 4 in all experiments. Fig. 9(c) presents
the PSNR results obtained by the proposed methods with
different β. It can be observed that the optimal result is
obtained by β = 0.1, thus we set β = 0.1 in all experiments.
Moreover, the growth rate µ of the penalty parameter is set
to 1.1 in all experiments. In summary, the relative optimal
reconstruction results can be achieved across a wide range of
parameter settings, which shows the robustness advantage of
the proposed LR2DP method.

VI. CONCLUSION

In this article, we provide a novel hybrid model-based and
learning-based method, named LR2DP, for SCI reconstruction,
which can effectively exploit the strong spectral correlation
and deep spatial structure of HSI, and adapt itself to diverse
scenes. The model-driven low-rank representation motivates
LR2DP to maintain the generalization ability and interpretabil-
ity of model-based methods for the underlying structure of

the global spectral correlation of HSI. The data-driven DIP
and DDP enable LR2DP to absorb the superior representation
capabilities of learning-based approaches for discriminative
exploitation of the internal and external structure of HSI.
We plug two data-driven deep priors into the HQS iteration
to estimate the spatial representation coefficient. Experimental
comparisons on simulated and real datasets show that our
LR2DP outperforms current state-of-the-art methods. More-
over, two different imaging systems and six different HSI
scenes also demonstrate superior generalization ability and
high reconstruction capacity of the proposed method. In the
future, we believe that our proposed framework can also be
used in other high-dimension data imaging applications, such
as video SCI reconstruction problems [57].
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