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Abstract— The existence of thick clouds covers the comprehen-
sive Earth observation of optical remote sensing images (RSIs).
Cloud removal is an effective and economical preprocessing step
to improve the subsequent applications of RSIs. Deep learning
(DL)-based methods have attracted much attention and achieved
state-of-the-art results. However, most of these methods suffer
from the following issues: 1) ignore the physical characteristics of
RSIs; 2) require paired images with/without cloud or extra aux-
iliary images; and 3) demand the cloud mask. These issues might
have limited the flexibility of existing networks. In this article,
we propose a novel low-rank regularized self-supervised network
(LRRSSN) that couples model-driven and data-driven methods to
remove the thick cloud from multitemporal RSIs (MRSIs). First,
motivated by the equal importance of image and cloud com-
ponents as well as their intrinsic characteristics, we decompose
the observed image into low-rank image and structural sparse
cloud components. In this way, we obtain a model-driven thick
cloud removal method where the spectral–temporal low-rank
correlation of the image component and the spectral structural
sparsity of the cloud component are effectively exploited. Second,
to capture the complex nonlinear features of different scenarios,
the data-driven self-supervised network that does not require
external training datasets is designed to explore the deep prior
of the image component. Third, the coupled model-driven and
data-driven LRRSSN is optimized by an efficient half quadratic
splitting (HQS) algorithm. Finally, without knowing the exact
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cloud mask, we estimate the cloud mask to preserve information
in cloud-free areas as much as possible. Experiments conducted in
synthetic and real-world scenarios demonstrate the effectiveness
of the proposed approach.

Index Terms— Low rank, multitemporal remote images,
self-supervised network, thick cloud removal.

I. INTRODUCTION

WITH the development of remote sensing technology and
hardware equipment, optical remote sensing images

(RSIs) with higher spatial, spectral, and temporal resolution
are now available. Benefit from abundant spatial, spectral,
and temporal information, RSIs have been widely employed
in Earth observation applications [1], such as land cover
classification [2], object detection [3], and environmental mon-
itoring [4]. However, due to the influence of imaging devices
and external environments, the collected RSIs are inevitably
degraded by thick clouds [5], which seriously affects the
downstream application. Analysis indicates that clouds cover
35% of the Earth’s surface annually [6], making it challenging
to obtain high-quality RSIs, especially for multitemporal RSIs
(MRSIs) [7]. Consequently, cloud removal becomes an urgent
problem in optical remote sensing imaging.

Numerous approaches for thick cloud removal have been put
forward, and they can be broadly classified into two categories:
traditional methods and deep learning (DL) methods [8].
Traditional methods achieve thick cloud removal using a
multistep process or model-driven optimization model, which
contains spatial approaches, spectral approaches, and temporal
approaches depending on how each method uses auxiliary
information type. Spatial approaches are mainly designed for
thick cloud removal in a single RSI, and they transform the
task of thick cloud removal into image inpainting [9], [10],
[11], [12]. They reconstruct information in the cloud-covered
area by leveraging spatial details from adjacent, cloud-free
patches within the same image. Maalouf et al. [9] recon-
structed the cloud region by propagating the geometrical flow
curves inside that zone. While effective for removing small
cloud regions with simple image details, these methods may
struggle with larger cloud regions with complex details.

Spectral approaches reconstruct the thick cloud bands by
introducing extra auxiliary cloud-free bands [13], [14], [15],
[16], [17]. These auxiliary bands can be collected from
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different temporal acquisitions or different sensors. As the
strong correlation of Moderate Resolution Imaging Spectro-
radiometer (MODIS) bands 6 and 7, Rakwatin et al. [13]
and Shen et al. [14] employed the auxiliary clean band 7 to
reconstruct the missing information of band 6. Additionally,
Xu et al. [16] developed a cloud removal method by using
signal transmission and spectral mixture analysis. Expanding
on this, Xu et al. [17] further proposed a noise-adjusted prin-
cipal component transform model for cloud removal. Overall,
spectral methods can reconstruct large cloud regions to some
extent. Nonetheless, these methods become inapplicable when
the spectral bands exhibit a lack of correlation due to the
absence of auxiliary information.

Since optical satellites can perform periodic imaging in the
same scene, temporal approaches reconstruct the thick cloud
regions by introducing correspondence images at different
times (i.e., MRSIs) [18], [19], [20], [21]. Lin et al. [21]
proposed an information cloning-based multistage method,
which reconstructs the information of cloud regions utilizing
temporal correlation of MRSIs. Given the high correlation
of MRSIs in the spectral–temporal dimension, model-driven
techniques regard thick cloud regions as missing information
and design low-rank completion models to reconstruct the
original information [22]. Ji et al. [23] reconstructed the miss-
ing information of cloud regions in MRSIs using a low-rank
tensor completion model. He et al. [24] proposed a tensor ring
completion model utilizing the low-rank property of MRSIs
of different dimensions. However, the performance of these
completion methods is highly dependent on the accuracy of
the cloud mask. In MRSIs, model-driven blind thick cloud
removal techniques have been progressively developed to
mitigate the impact of cloud masks. These methods regard the
task of thick cloud removal as a denoising inverse problem
and explore the statistical prior of the image and cloud com-
ponents [25], [26], [27]. By decomposing the observed image
into the clean image and cloud components, Chen et al. [25]
first proposed a blind cloud removal method by decomposing
the cloud-contaminated image into a low-rank clean image
component and sparse cloud component and detecting the
cloud mask from the estimated cloud component. Following
the perspective of image decomposition [28], [29], [30], [31],
Lin et al. [29] suggested a coupled tensor factorization to
explore the relationship between the representation coefficients
of the MRSIs in the same scene. Zheng et al. [30] regarded
the thick cloud-contaminated image as the combination of
low-rank tensor component and group sparse component.
While the model-driven approach attempts to tackle the critical
issue of cloud masks in MRSIs, it relies heavily on the effec-
tiveness of handcrafted priors. However, these handcrafted
priors may not be suitable for every data with different
resolutions and different scenarios.

Recently, the powerful nonlinear fitting capabilities of neu-
ral networks have made DL a successful tool in image
processing [32]. As a result, DL-based methods are widely
used in thick cloud removal, learning a nonlinear end-to-
end mapping between the thick cloud-contaminated image
and the paired cloud-free image [33], [34], [35], [36]. The
convolutional neural network (CNN) is usually designed to

reconstruct the thick cloud-contaminated regions [37], [38],
[39], [40], [41], [42], [43]. Zhang et al. [37] designed a
progressive spatiotemporal patch group learning framework
for thick cloud removal in MRSIs. Ji et al. [38] proposed
a self-trained multiscale full convolutional network for cloud
removal in MRSIs. Ebel et al. [43] designed a multitemporal
3-D CNN that predicts a cloud-free image from a sequence of
synthetic aperture radar (SAR) images. To improve the perfor-
mance of CNN, the generative adversarial networks (GANs)
are designed for thick cloud removal [8], [44], [45], [46], [47],
[48]. Xu et al. [8] introduced the attention mechanism-based
GAN for cloud removal in Landsat images. Since DL-based
methods effectively learn the multiscale features of clouds,
they can achieve better results than traditional methods with
sufficient paired training data. However, existing DL methods
focus on thick cloud removal for single or multispectral
images (RGB images) and ignore the multitemporal intrinsic
characteristics of thick cloud-contaminated images. Moreover,
cloud masks need to be given accurately so that cloud detection
is a key preprocessing step and greatly affects the results. Fur-
thermore, these networks are often designed for specific data
and cloud conditions, which means that they may not apply
to test data that differ from the training data in resolution,
number of spectral bands, or number of temporal nodes.

The combination of data-driven and model-driven methods
can effectively utilize the statistical priors from the data
and the potential deep image priors [49], [50], [51], [52],
[53]. Zhao et al. [50] introduced a novel tensor completion
framework that simultaneously utilizes complementary global,
local, and nonlocal priors. Luo et al. [51] propose a nonlinear
multilayer neural network to learn a nonlinear transform by
solely using the observed tensor in a self-supervised manner.
Wang et al. [52] presented an unsupervised domain factor-
ization network for thick cloud removal, enabling effective
and efficient utilization of the rich spatial–spectral–temporal
information of MRSIs. However, there has been relatively
little research on combining data-driven and model-driven
approaches specifically for cloud removal tasks, and the poten-
tial of such hybrid methods has not been fully explored.

Considering the advantages and obstacles of the traditional
and DL methods, in this article, we propose a novel low-rank
regularized self-supervised network (LRRSSN) for thick cloud
removal in MRSIs, which has the ability to address the
limitations of both types of approaches and inherit their
strengths. First, inspired by the traditional blind thick cloud
removal framework, we give a detailed analysis of both
the intrinsic physical characteristics of the image and cloud
components. We regard the thick cloud removal problem as
an image decomposition issue. In this context, the model-
driven low-rank prior is introduced to capture the global
spectral–temporal correlation of the image component, while
the cloud component is leveraged by model-driven structural
sparsity. Within this framework, the thick cloud-contaminated
image is decomposed into the image and cloud components.
These two components are treated equally and completely
decoupled. Second, due to the complex features of MRSIs,
model-driven priors may not be applicable to every data.
Aiming at utilizing the powerful nonlinear feature extraction
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Fig. 1. Illustration of our proposed LRRSSN for thick cloud removal in MRSIs.

capability of DL-based methods, we integrate the deep prior
captured by a self-supervised network into our model-driven
optimization model to improve the data representation abili-
ties. Third, using the HQS framework, an efficient algorithm
has been designed to solve the model-driven and data-driven
image decomposition model. In this decomposition frame-
work, the image component and cloud component can be
solved alternatively. This iterative estimation strategy synergis-
tically enhances both components. Finally, we design a simple
threshold method to estimate the cloud mask based on the
cloud component extracted during the iterative process, and the
pixels of the cloud-free regions are projected onto the image
component to avoid information loss in the final reconstructed
image. The illustration of the proposed LRRSSN for thick
cloud removal in MRSIs is presented in Fig. 1. Overall,
the main contributions of this article are summarized as
follows.

1) We propose a novel method LRRSSN for thick cloud
removal in MRSIs via coupling the superiorities of
model-driven and data-driven methods, which can simul-
taneously reconstruct the cloud coverage information
and estimate the cloud mask. Compared with traditional
methods, the incorporation of data-driven deep prior
improves the ability of image reconstruction. Mean-
while, model-driven priors explore the intrinsic physical
characteristics of image and cloud components, which
can improve the data representation capability based on
DL methods.

2) We jointly employ the model-driven low-rank prior
and data-driven deep prior to explore the intrin-
sic global spectral–temporal correlation and complex
spatial–spectral features of the image component. In par-
ticular, the data-driven deep prior is characterized by
a self-supervised network, which does not require any
training data and external auxiliary data.

3) We design an effective HQS algorithm to iteratively
optimize the model-driven regularization and data-driven
self-supervised network, which can benefit each other.
The comprehensive experiments conducted on both

simulated and real datasets verify the superiority of our
LRRSSN over traditional and DL-based methods.

The remainder of this article is organized as follows.
Section II introduces the problem formulation and the pro-
posed method. Section III reports the experimental results
on both simulated and real data, ablation study, and model
discussion. Finally, Section IV concludes this article.

II. METHODOLOGY

A. Problem Formulation

Let Y ∈ Rm×n×b×t be the thick cloud-contaminated MRSIs,
where m and n are the spatial resolutions, and b and t are
the number of spectral bands and time nodes, respectively.
Assuming that the observed MRSIs Y can be decomposed
into the clean image component and the cloud component,
then the degradation model can be mathematically represented
as follows [25], [29]:

Y = M⊙ X + C (1)

where X ∈ Rm×n×b×t is the clean image component, C ∈

Rm×n×b×t is the cloud component, M ∈ Rm×n×b×t is a binary
mask with the zeros representing the thick cloud-contaminated
regions and ones representing the cloud-free regions, and ⊙

denotes the Hadamard product.
The problem of estimating the clean image X from the

thick cloud-contaminated image Y is an ill-posed issue. There-
fore, suitable priors are needed to regularize them for stable
solutions. According to the maximum a posteriori (MAP)
probability, the thick cloud removal problem can be transferred
to minimize the following optimization function:

min
X ,C,M

1
2
∥Y −M⊙ X − C∥2

F + λ1 R(X ) + λ2 R(C) (2)

where the first term represents the data fidelity term, λ1 and
λ2 are the regularization parameters, and R(X ) and R(C) are
the regularizers to describe the intrinsic physical characteristics
of X and C, respectively.
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Fig. 2. Low-rank property and structural sparse property of the image
component and cloud component, respectively.

B. Model-Driven Image Decomposition Framework

We present a detailed analysis on both the intrinsic physical
characteristics of the image and the cloud components and then
design the corresponding regularizers.

1) Low-Rank Characteristic of Image Component: Since
the MRSIs are collected from the same region at different
time nodes, we assume that ground object features within
this region exhibit minimal variation over a short period.
Therefore, there is a noticeable high correlation along the
spectral–temporal dimension. To demonstrate this characteris-
tic, we quantitatively analyze the statistical distribution of the
image component in MRSIs. Fig. 2 illustrates the distribution
of the singular values of the MRSIs in the spectral–temporal
dimension, i.e., reshape the X ∈ Rm×n×b×t as X ∈ Rmn×bt .
We can clearly observe a declining trend in the singular values
of the image component, indicating the strong correlation of
the image component. To effectively capture this correlation,
we introduce a model-driven low-rank prior to regularize the
image component. Thus, the regularizer R(X ) is designed as
follows:

R(X ) = ∥X∥∗ =

∑
i

σi (R(X )) (3)

where R is a reshape operator, i.e., R: X ∈ Rm×n×b×t
→ X ∈

Rmn×bt , and σi (X) is the i th singular value of X.
2) Structural Sparse Characteristic of Cloud Component:

In general, the positions of the thick cloud in the imaging
region change over time. We can assume that a certain location
is obscured by thick cloud at some time nodes, while it remains
cloud-free at other time nodes. Thick cloud obscures only a
fraction of the regions in the MRSIs, leaving the majority
cloud-free, implying that most of the pixel values in the
cloud component are zero or close to zero, with only a few
nonzero pixels representing the thick cloud. Naturally, the
sparse prior can be introduced to describe the characteristics
of the cloud component. However, sparsity only considers
the random distribution of sparse elements and neglects the
intrinsic structure between spectral bands. Assuming that
the thick cloud contaminates all bands in the MRSIs, the
cloud component possesses a distinctive sparse structure along
the spectral dimension at each time node [27]. To better
understand this characteristic, we visually present the spectral

unfolding matrix of the cloud component for a time node in
Fig. 2. It is evident that the unfolding matrix has a significant
structural characteristic, and the elements of each column
approximately tend to be all zero or all nonzero. Since the
proportion of cloud regions is much smaller than that of cloud-
free regions, the number of zero columns is much larger than
that of the nonzero columns. Especially, the location of a
column similar to a stripe is where the thick cloud is located.
Inspired by this observation, the l2,1-norm is introduced to
characterize the structural sparse characteristic of the cloud
component along the spectral dimension, i.e., the regularizer
R(C) is designed as follows:

R(C) = ∥C∥2,1 =

m∑
i=1

n∑
j=1

t∑
q=1

∥Ci, j,:,q∥2 (4)

where Ci, j,:,q is the tube of C.
Based on the above analysis, the model-driven low-rank and

structural sparse decomposition framework can be formulated
as follows:

min
X ,C,M

1
2
∥Y −M⊙ X − C∥2

F + λ1∥X∥∗ + λ2∥C∥2,1. (5)

C. Proposed LRRSSN

Model-driven priors effectively explore the intrinsic physical
characteristics of the image and cloud components and limit
the solution space to a reasonable range, but this is not
sufficient to capture the complicated features of the MRSIs.
Recent works have demonstrated that data-driven DL meth-
ods are capable of learning complicated structures in the
data [54], [55], [56]. To leverage this advantage, we integrate
the data-driven deep prior captured by neural networks into
the image decomposition framework to improve the repre-
sentation abilities of the thick cloud removal model. Many
neural networks can be used to adaptively learn the implicit
deep prior of the image component, such as FFDNet [57]
and DIP [58]. However, since there may be cloud-free time
nodes in MRSIs, these networks fail to fully utilize this
information to guide accurate image reconstruction. Recently,
Uezato et al. [59] presented a guided deep decoder (GDD)
network to learn the deep image prior. GDD learns multiscale
features from the guidance image and then incorporates the
multiscale features into the deep decoder network to guide
the image reconstruction. Moreover, GDD does not require
external training data and employs a self-supervised approach
to optimize network parameters. The network structure of
GDD is shown in Fig. 3, and more details on GDD can be
referred to [59]. Inspired by the superiority of GDD and the
special data characteristics of MRSIs, we utilize GDD to learn
implicit deep priors for the image component. The deep prior
assumes that the image component X is the output of a neural
network, i.e.,

X = T2(E,G) (6)

where T represents the GDD network, 2 denotes the network
parameters, E represents the random tensor input to the
network, and G denotes the guidance image.
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Fig. 3. Illustration of the GDD network. The guidance image G is first input into an encoder–decoder network to extract its multiscale semantic features.
The semantic features are then employed to guide the parameter estimation and image generation in the deep decode by two units upsampling refinement unit
(URU) and feature refinement unit (FRU), where URU integrates an attention gate to assign weights to features obtained after upsampling and channel-wise
normalization (CN) within the deep decoder, and FRU leverages the high-level semantic features of the guidance image to promote semantic alignment.

Combining (5) and (6), we can obtain the proposed
LRRSSN model as follows:

min
C,2,M

1
2
∥Y −M⊙ T2(E,G) − C∥2

F

+λ1∥T2(E,G)∥∗ + λ2∥C∥2,1. (7)

It is worth noting that in [59], GDD is directly employed
as an end-to-end trained network for image fusion. This is
very different from our proposed model. The proposed model
integrates the advantages of the model-driven and data-driven
methods while circumventing their disadvantages for MRSIs
thick cloud removal, and GDD is embedded in an iterative
optimization framework.

D. Optimization

By introducing the auxiliary variable W , the problem can
be rewritten as follows:

min
C,2,M,W

1
2
∥Y −M⊙ T2(E,G) − C∥2

F

+ λ1∥W∥∗ + λ2∥C∥2,1

s.t. W = T2(E,G). (8)

Based on the HQS algorithm, the quadratic penalty function
of problem (8) is given as follows:

min
C,2,M,W

1
2
∥Y −M⊙ T2(E,G) − C∥2

F + λ1∥W∥∗

+ λ2∥C∥2,1 +
ρ

2
∥T2(E,G) −W∥

2
F (9)

where ρ is a penalty parameter. The optimization of (9) can
be decomposed into the following subproblems.

Updating W: The W-subproblem is given as follows:

arg min
W

λ1∥W∥∗ +
ρ

2
∥T2(E,G) −W∥

2
F . (10)

The closed-form solution of W can be obtained by the singular
value thresholding operator

W = R−1(U6+V T ) (11)

where 6+ = max(6 − λ1/ρ, 0), and U6V T
= R(T2(E,G)).

Updating C: The C-subproblem is given as follows:

arg min
C

1
2
∥Y −M⊙ T2(E,G) − C∥2

F + λ2∥C∥2,1. (12)

The optimization is solved by the soft shrinkage operator

Ci, j,:,q =


∥Bi, j,:,q∥2 − λ2

∥Bi, j,:,q∥2
Bi, j,:,q , if ∥Bi, j,:,q∥2 > λ2

0, otherwise
(13)

where B = Y −M⊙ T2(E,G).
Updating M: When the cloud component is extracted from

the observed MRSIs, a simple threshold method can be used
to estimate the cloud mask. The idea is derived from that the
location of the thick cloud has a relatively large value in the
cloud component. Therefore, the cloud mask M is generated
by the following threshold operator:

Mi, j,:,q =


1, if

1
b

b∑
p=1

∣∣Ci, j,p,q
∣∣ < ϵ

0, else

(14)

where ϵ > 0 denotes a given threshold value.
Updating 2: The 2-subproblem is given as follows:

arg min
2

1
2
∥Y−M⊙ T2(E,G) − C∥2

F +
ρ

2
∥T2(E,G) −W∥

2
F .

(15)

The 2-subproblem is a quadratic minimization problem, and
many gradient descent methods can be employed to solve
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it. To effectively optimize the 2-subproblem, the Adam
algorithm [60] is chosen as the optimizer in the GDD network.
It is important to note that the guidance image is obtained from
the weighted average of the last iteration of the network, rather
than external auxiliary data, i.e.,

Gk+1
=

t∑
q=1

wqT2(E,Gk)(:, :, :, q) (16)

where wq denotes the weight of the qth time node, and we
empirically set weights of the cloud-free time node and cloud
time node as wq = 1 and wq = 0.1, respectively.

Finally, to preserve the information of cloud-free regions in
MRSIs, the thick cloud removal result (image component) is
achieved as follows:

X = M⊙ Y + (1 −M) ⊙ T2(E,G). (17)

We summarize the whole thick cloud removal procedure in
Algorithm 1. We implement the GDD network in the PyTorch
framework and minimize the loss function using the Adam
optimizer (β1 = 0.9 and β2 = 0.999), and the learning rate is
set as 0.002. All experiments are run on a platform with Intel
i9-12900 and NVIDIA GeForce RTX 3090.

Algorithm 1 The Optimization Process for LRRSSN Solver
Input: Observed cloud-contaminated MRSIs Y , regulariza-

tion parameters λ1 and λ2, threshold value ϵ, and weight
w.

1: Initialize: Let X = Y , C = O, M = O, ρ = 0.001,
α = 1.02, K = 25, and tolerance for stopping criterion
tol = 10−3.

2: for k = 1 : K do
3: Update W via (11);
4: Update C via (13);
5: Update M via (14);
6: Update guidance image G via (16);
7: Update 2 via GDD in (15);
8: Update the penalty parameter ρ = α ∗ ρ;
9: Achieve the image component X via (17);

10: Check the convergence condition:
∥X (k)

−X (k−1)
∥F

∥X (k−1)∥F
≤ tol.

11: end for
Output: Image component X and cloud component C.

III. EXPERIMENTS

To validate the effectiveness of the proposed method for
thick cloud removal in MRSIs, we conduct experiments on
both synthetic and real datasets. Our method is compared with
six state-of-the-art thick cloud removal methods, including
model-driven methods with high-accuracy low-rank tensor
completion (HaLRTC) [22], augmented Lagrangian method
with inexact proximal gradients (ALM-IPGs) [61], total
variation regularized low-rank sparsity decomposition with
information compensation method (TVLRDC) [25], robust
thick cloud removal method (RTCR) [29], self-supervised
method MT [42], and inpainting method Mosaicing [43],

TABLE I
THREE DIFFERENT MRSIS IN THE SIMULATED EXPERIMENT

Fig. 4. Pseudo color images (R: B4, G: B3, and B: B2) of the Mountain
dataset (“MM/DD/YYYY” means the acquired time of the image).

Fig. 5. Pseudo color images (R: B4, G: B3, and B: B2) of the City dataset
(“MM/DD/YYYY” means the acquired time of the image).

Fig. 6. Pseudo color images (R: B4, G: B3, and B: B2) of the Farmland
dataset (“MM/DD/YYYY” means the acquired time of the image).

where HaLRTC and ALM-IPG are nonblind completion meth-
ods, RTCR is a semiblind optimization method, TVLRDC is
a blind optimization method, MT is a nonblind DL method,
and Mosaicing is a traditional nonblind inpainting method.
The reproduction codes of comparison methods are released
publicly or provided by the authors, and we try our best to
choose the optimal parameters so as to achieve the best results.
For nonblind methods, we provide them with an accurate
mask.

A. Simulated Experimental Setting

To thoroughly evaluate the performance of the proposed
methods and demonstrate the flexibility for thick cloud
removal, we choose different scenes in MRSIs and consider
different thick cloud-contaminated cases.

1) Datasets: We select three different ground object scenes
from the SEM12MS-CR-TS dataset1 as simulation data,
termed the Mountain dataset, City dataset, and Farmland
dataset, respectively. The image sizes of the three datasets are
listed in Table I, and the pseudo color images and acquired
times are presented in Figs. 4–6.

1https://github.com/PatrickTUM/SEN12MS-CR-TS
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TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT METHODS UNDER DIFFERENT CLOUD COVERAGE ON THE MOUNTAIN DATASET

Fig. 7. Different shapes and coverages of cloud masks designed in the
simulated experiment. The visualization is shown by 1−M, i.e., the white and
black are thick cloud locations and cloud-free locations, respectively. Mask
1: Cloud coverage ranges from 15% to 30%. Mask 2-(1-3): Cloud coverage
ranges from 30% to 45%. Mask 3: Cloud coverage ranges from 45% to 60%.

2) Cloud Mask and Thick Cloud Simulation Setting: Real-
world MRSIs are usually contaminated by different types
of thick clouds, and the shape and coverage of clouds in
MRSIs change over time. To simulate these real thick cloud
scenarios as far as possible, we design different shapes and
coverage of cloud masks in the simulated experiment, which
are shown in Fig. 7. Given the cloud mask M, we simulate the
thick cloud-contaminated MRSIs according to the following
formula:

Yi, j,p,q =

{
1 if Mi, j,p,q = 0
Xi, j,p,q otherwise

where X is the ground truth image.
3) Simulated Datasets: To demonstrate the flexibility of

our approach to the thick cloud, we consider the impact
of different factors on the results of thick cloud removal.
The influence factors of cloud coverage, the number of time
nodes, and the number of spectral bands are designed in our
experiments. Next, we illustrate in detail how to simulate the
cloud-contaminated MRSIs.

Mountain Dataset: We conduct different cloud coverage on
the Mountain dataset to evaluate the performance of different
methods. Three different cloud coverages are considered in the
experiment, including 15%−30%, 30%−45%, and 45%−60%.
Since there will be cloud-free time nodes in the real scene,
we select the first three time nodes to add a thick cloud, and
the remaining time nodes are cloud-free data. The cloud masks
with different cloud coverage shown in Fig. 7 are employed
to generate the contaminated image with a thick cloud.

City Dataset: In the City dataset, we examine the impact
of the number of time nodes. We change the time nodes
from the set of N = {3, 6, 9, 12} and add the cloud coverage
within the range of 30%–45%. To simulate the different cloud-
contaminated images, we choose 2N /3 of the time nodes and
select the corresponding number of cloud masks from the
Mask 2 group to add the thick cloud.

Farmland Dataset: We verify the robustness of the proposed
method with regard to different numbers of spectral bands in
each time node on the Farmland dataset. These experiments
are conducted under the condition of cloud coverage with
30%–45%. The number of spectral bands varies from 4 to
10 with a step of 2. Analogously, the first three-time nodes
are selected to add a thick cloud, and Mask 2-1 is employed
as cloud masks.

4) Quantitative Metrics: To evaluate the reconstruction
quality of different thick cloud removal methods, three quan-
titative metrics, including peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) [62], and root-mean-square error
(RMSE), are employed. We calculate the mean values of
recovered images for cloud-contaminated temporal nodes to
evaluate different methods. Generally, the higher values of
PSNR and SSIM and the smaller results of RMSE typically
indicate a better thick cloud removal result.

B. Simulate Experimental Results

1) Experimental Results on Mountain Dataset: We present
the quantitative comparison of different methods under differ-
ent cloud coverages on the Mountain dataset in Table II, with
the best results highlighted in bold. We can clearly observe
from Table II that the proposed LRRSSN outperforms other
comparison methods based on all quantitative metrics. The
quality of all thick cloud removal methods decreases as cloud
coverage increases, indicating that large cloud coverage is
relatively more difficult. In particular, the results of the pro-
posed LRRSSN method are significantly improved compared
to RTCR, indicating the effectiveness of a data-driven self-
supervised network. Moreover, the proposed self-supervised
method is obviously superior to the self-supervised learning
MT method, which is mainly due to the combination of
model-driven and data-driven methods.

To further illustrate the reconstruction quality of different
methods, we present the pseudo color images obtained by
different thick cloud removal methods on the Mountain dataset
with cloud coverage from 30% to 45%, as shown in Fig. 8.
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Fig. 8. Recovered results of all comparison methods on the Mountain dataset with cloud coverage from 30% to 45%. From top to bottom: recovered results
of time nodes 1, 2, and 3. (a) Observed. (b) Ground truth. (c) HaLRTC. (d) ALM-IPG. (e) TVLRDC. (f) RTCR. (g) MT. (h) Mosaicing. (i) LRRSSN.

TABLE III
QUANTITATIVE COMPARISON OF DIFFERENT METHODS UNDER DIFFERENT TIME NODES ON THE CITY DATASET

Fig. 9. Recovered results of all comparison methods on the City dataset with six-time nodes. From top to bottom: recovered results of time nodes 1, 2, 3,
and 4. (a) Observed. (b) Ground truth. (c) HaLRTC. (d) ALM-IPG. (e) TVLRDC. (f) RTCR. (g) MT. (h) Mosaicing. (i) LRRSSN.

To better highlight the difference between different results,
we magnify a representative subregion in the image. We can
see that TVLRDC blurs the image details, while HaLRTC,
ALM-IPG, RTCR, and MT suffer from spectral distortion in

the first time node. The Mosaicing method obtains undesirable
ringing artifacts. In contrast, the proposed LRRSSN effectively
suppresses the thick clouds while reconstructing fine image
structures and details.
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TABLE IV
QUANTITATIVE COMPARISON OF DIFFERENT METHODS UNDER DIFFERENT SPECTRAL BANDS ON THE FARMLAND DATASET

Fig. 10. Recovered results of all comparison methods on the Farmland dataset with four spectral bands. From top to bottom: recovered results of time
nodes 1, 2, and 3. (a) Observed. (b) Ground truth. (c) HaLRTC. (d) ALM-IPG. (e) TVLRDC. (f) RTCR. (g) MT. (h) Mosaicing. (i) LRRSSN.

2) Experimental Results on City Dataset: Table III presents
the quantitative comparison of different methods under differ-
ent time nodes on the City dataset. With the increase in time
nodes, the results of using low-rank regularization methods
are gradually improved, as the spectral–temporal correlation
becomes stronger due to the increased auxiliary information.
However, the quantitative results of the self-supervised DL
method do not improve with the increase in auxiliary infor-
mation, indicating that the lack of model-driven prior makes
them to not make full use of the auxiliary information. From
Table III, we can find that our LRRSSN model achieves
the best performance among all the comparison methods in
different cases, further indicating the advantage of coupling
model-driven and data-driven methods.

The image recovery of different methods on the City dataset
in the case of six-time nodes is shown in Fig. 9. It is easy to see
that the proposed LRRSSN method can achieve better thick
cloud removal performance, i.e., more faithfully maintaining
the image’s spectral color and recovering the image details.
It should be noted that the comparison methods either cause
spectral distortion or destroy the spatial features of the image.
The proposed method better balances the model-driven low-
rank prior and data-driven deep prior of HSI data to get good
thick cloud removal results.

3) Experimental Results on Farmland Dataset: The exper-
imental results on the Farmland dataset are listed in Table IV.
As the number of spectral bands gradually increases, the

performance of each method does not show a significant
improvement. The reason is that the thick cloud contaminates
all spectral bands, and an increase in the number of spectral
bands does not contribute additional information about the
cloudy region. It can be observed that the proposed LRRSSN
achieves better quantitative results than all comparison meth-
ods in all cases. Furthermore, the proposed LRRSSN achieves
a result nearly 5 dB higher than that of TVLRDC, demon-
strating the advantage of the self-supervised deep network.

In Fig. 10, we show the visual recovery performance of
all comparison methods in the case of four spectral bands.
This figure clearly shows that all methods cannot perfectly
recover the information of the original image, and the com-
parison methods have obviously damaged the color fidelity of
pseudo color images and lost spatial details. Comparatively,
the proposed LRRSSN model still maintains a relatively better
performance, maintaining better texture details and achieving
better color fidelity, which is consistent with the experimental
results of the other two datasets.

C. Real Experiment

To further demonstrate the performance of the proposed
method, we conduct to remove the real thick clouds. The
real dataset is derived from the 112th region of interest in
the SEM12MS-CR-TS dataset. This data is of the size 256 ×

256 × 13 × 5, and four of the time nodes are heavily polluted
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Fig. 11. Recovered results of all comparison methods on the real dataset. From top to bottom: recovered results of time nodes 1, 2, 3, and 5. (a) Observed.
(b) Mask. (c) HaLRTC. (d) ALM-IPG. (e) TVLRDC. (f) RTCR. (g) MT. (h) Mosaicing. (i) LRRSSN.

by thick clouds and shadows shown in Fig. 11(a). Since the
comparison methods require cloud masks, we provide them
with a mask that covers all clouds and shadow areas shown
in Fig. 11(b).

Fig. 11 displays the recovered performance of all methods
on the real dataset. TVLRDC reduces the thickness of the
clouds but fails to remove the thick clouds and restore the
original image. MT can handle small-scale thick clouds, but
it is difficult to solve the time node of large-scale cloud
coverage. Mosaicing mainly employs the information of the
cloud-free time node to remove the thick clouds, so that
the pseudo information can be restored. Given an accurate
mask, methods such as HaLRTC, ALM-IPG and RTCR can
remove thick clouds. However, they introduce significant ring-
ing artifacts in the transition region between dense clouds
and clear regions. In contrast, the proposed LRRSSN not
only recovers fine image details but also eliminates the visual
artifacts effectively. Moreover, the information reconstructed
by the proposed method in thick cloud areas maintains a
consistent brightness gradient with cloud-free areas, making
the reconstruction effect more reasonable.

D. Ablation Study and Discussion

1) Ablation Study: We conduct several ablation studies to
verify the effectiveness of coupling the model-driven low-
rank prior and data-driven deep prior. First, to investigate
the necessity of incorporating the data-driven deep prior,
we disable the deep regularizer (i.e., GDD network) of the
image component, which is denoted as LRRSSN w/o DP.
Moreover, we show the results of disabling the model-driven
low-rank prior, which is represented as LRRSSN w/o LR.
Table V lists the recovered PSNRs obtained by the original
LRRSSN and its variants on all simulated datasets. It is
evident that LRRSSN outperforms its variants, and these two

regularizers contribute significantly to the performance of the
proposed LRRSSN. Specifically, in the case of large cloud
coverage areas (such as the case of 45%–60% in the Mountain
dataset), the introduced data-driven deep prior can significantly
improve the ability of thick cloud removal. When there are
more time nodes in MRSIs (such as the case of the City
dataset with twelve-time nodes), model-driven low-rank prior
can capture global spectral–temporal correlation and make the
reconstruction results better. In summary, the ablation studies
demonstrate that the model-driven low-rank and data-driven
deep prior are complementary in the proposed method.

2) Analysis of Regularization Parameter λ1: Parameter
λ1 is employed to control the contribution of the model-driven
low-rank regularizer. In our model, we set the parameter λ1 =

cρ, where c is a tuning parameter. Fig. 12(a) shows the change
in PSNR values with respect to the parameter c in the City
dataset with six-time nodes. With the increase in parameter c,
the PSNR values increase significantly. This outcome is rea-
sonable since the enhancement of low-rank constraints should
lead to higher reconstruction accuracy. However, choosing a
larger parameter results in loss of information, leading to lower
results. From the result, the best result is achieved when c is
set as 25, thus we set λ1 = 25ρ in all experiments.

3) Analysis of Regularization Parameter λ2: Parameter
λ2 is employed to control the structural sparsity of the cloud
component. Fig. 12(b) shows the change in the PSNR values
with the change in the parameter λ2. It is shown that the thick
cloud removal result depends on the choice of λ2. Since the
degree of structural sparsity of cloud components varies in
different scenarios, we empirically select parameter λ2 in the
interval [0.1, 0.7].

4) Convergence Analysis: Since the solved algorithm
involves the optimization of the deep neural network (DNN),
it is difficult to give a convergence theoretically. Instead,
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TABLE V
PSNR RESULTS OF ABLATION STUDY ON THE SIMULATED DATASETS

Fig. 12. Sensitivity analysis of the (a) parameters λ1 and (b) λ2 under the
case of City dataset with six-time nodes.

Fig. 13. RelCha versus iteration number in three different cases. (a) Mountain
dataset with cloud coverage ranging from 30% to 45%. (b) City dataset with
six-time nodes. (c) Farmland dataset with four spectral bands.

we numerically demonstrate the convergence of the proposed
method. Fig. 13 presents the relative change (RelCha) versus
the iteration number on three different thick cloud removal
cases. It is evident that the RelCha values achieve stability and
converge to nearly zero as the iteration number increases, indi-
cating the strong convergence of the proposed HQS algorithm
to solve the LRRSSN model.

IV. CONCLUSION

In this article, we have proposed a novel thick cloud
removal method for MRSIs, named LRRSSN, by coupling
model-driven optimization approaches and data-driven DL
techniques. To make the recovery results not affected by cloud
masks, we regard the thick cloud removal problem as an image
restoration problem and decompose the observed image into
the equally important image component and cloud component.
In this decomposition framework, the model-driven low-rank
prior effectively discriminates the physical characteristics of
the image component. Meanwhile, the structural sparsity
applied to the cloud component aids in extracting the thick
cloud image distinctly. Moreover, the introduced data-driven
deep prior inherits the powerful nonlinear fitting capability of
DL-based approaches for the effective exploitation of local
and nonlocal multiscale features in the image. In general, the
proposed method does not require cloud masks and external
training datasets, so it can be flexibly applied to thick cloud

removal problems for different types of data. A series of
simulated and real data experiments have been conducted to
demonstrate the effectiveness of the proposed method over
some model-driven or data-driven methods in terms of both the
quantitative metrics and visual results. In the future, we will
consider using the neural network to learn the regularization
parameters in the model adaptively.
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