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Abstract— In this letter, we propose a novel unidirectional
spatial and spectral smoothed tensor ring (U3STR) decomposition
for hyperspectral image (HSI) denoising and destriping. The pow-
erful tensor ring (TR) decomposition is introduced to explore the
global spatial–spectral correlation of HSI, which transforms the
restoration of HSI into estimating three TR factors. To address
the local spatial–spectral smoothness of HSI and the directional
characteristic of stripe noise, unidirectional spatial and spectral
smoothed constraints are applied to the horizontal spatial and
spectral TR factors, respectively. Moreover, considering that the
stripe noise shares spatial correlation and local smoothness with
the image component, we strategically utilize band-by-band low
rank and unidirectional total variation (TV) regularization, effec-
tively disentangling stripe noise from the image content without
conflicting the image regularization. The proposed U3STR model
is solved by the alternating direction method of multipliers
(ADMM) algorithm effectively. Experimental results demonstrate
that our method outperforms other HSI restoration methods in
denoising and destriping, notably enhancing the quality of the
restored image by an average of 3 dB over existing methods.

Index Terms— Denoising, destriping, hyperspectral image
(HSI), tensor ring (TR) decomposition.

I. INTRODUCTION

AHYPERSPECTRAL image (HSI) contains abundant spa-
tial and spectral information, which is widely applied

in various fields, such as building extraction [1] and ground
object classification [2]. However, due to sensor malfunctions,
atmospheric interference, and ground surface influences, the
acquired HSI is inevitably degraded by Gaussian, impulse,
and stripe noise, which greatly reduce the utility rate of
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HSI data. Therefore, HSI denoising has become an essential
preprocessing step for subsequent applications.

In recent years, numerous HSI denoising methods have
been developed, which can be roughly divided into two cate-
gories: deep learning (DL)-based approaches and model-based
approaches. Owing to the potent nonlinear learning ability of
deep neural networks, DL-based methods have been raised for
HSI denoising. The main idea of such methods is to learn the
mapping function from noisy HSI to potential clean HSI by
various parameterized neural networks, such as convolutional
neural networks [3] and Transformer networks [4]. Despite
their effects in scenarios mirroring their training datasets, these
methods often exhibit limitations in generalization ability,
especially under diverse real-world conditions with varying
Gaussian noise intensities and stripe noise proportions.

Model-based approaches treat HSI denoising as an ill-posed
inverse problem, delving into statistical priors pertinent to the
target imagery. The commonly used prior information in the
HSI denoising task includes low rank, local smoothness, and
nonlocal self-similarity. Low-rank prior is based on the global
spatial–spectral correlation of HSI and primarily characterized
by three types of tools: matrix nuclear norm, low-rank matrix
factorization, and low-rank tensor factorization [5], [6], [7],
[8], [9], [10], [11]. The performance of low-rank methods
can be further improved by incorporating local spatial–spectral
smoothness priors. Since the local regions and adjacent bands
of HSI contain similar objects, the local smoothness prior
usually exists within the spatial–spectral dimensions. Total
variation (TV) regularization serves as an effective tool to
encode the local smoothness prior. By incorporating the TV
or enhanced TV regularization into the low-rank framework,
a series of HSI denoising methods are developed [12], [13],
[14], [15]. Given the prevalence of similar patterns within
the spatial dimension of HSI, nonlocal self-similarity prior is
frequently used for HSI denoising and has achieved advanced
performances [16], [17], [18]. Despite rapid advancements in
HSI denoising, the above methods struggle under complex
mixed noise conditions, especially high-level stripe noise.

Recently, in response to the complex mixed noise with
high-level stripe noise, joint HSI denoising and destriping
methods have emerged. These methods treat the stripe noise
as an independent component rather than as sparse noise,
while simultaneously considering the prior information of
both the image component and the stripe noise. For example,
Zhang et al. [19] and Su et al. [20] proposed a double low-rank
(DLR) matrix decomposition method and a fast graph Lapla-
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Fig. 1. Framework of the proposed U3STR. The TR decomposition and unidirectional spatial and spectral TV regularization are designed to capture the global
spatial–spectral correlation and local spatial–spectral smoothness of HSI. Moreover, band-by-band low rank and unidirectional spatial TV regularizations are
employed to estimate the stripe noise.

cian regularizer (FGLR) for HSI denoising and destriping,
respectively. However, the majority of the existing methods
are based on matrix modeling to depict the prior information
of HSI, which inevitably disrupts the spatial structure of
HSI. Considering the intrinsic 3-D structure of HSI, tensor-
based modeling could more effectively capture and retain the
spatial–spectral information of HSI.

In this letter, we propose a novel unidirectional spatial and
spectral smoothed tensor ring (U3STR) decomposition for HSI
denoising and destriping, effectively eliminating the dense
stripe noise in mixed noise scenarios (see Fig. 1). The main
contributions of this letter are delineated as follows.

1) To effectively preserve the spatial–spectral correlation of
HSI, a novel tensor ring (TR) decomposition is designed
to approximate the HSI, which transforms the restoration
into estimating three TR factors. Moreover, we employ
unidirectional spatial and spectral smoothed regulariza-
tions to constrain the spatial horizontal and spectral TR
factors, respectively, instead of directly regularizing the
HSI itself to explore the local smooth characteristic.

2) To discriminatively separate the dense stripe noise from
the image, the band-by-band low rank and unidirectional
TV regularization terms are employed to constrain the
stripe noise, which avoid conflict with the image compo-
nent. Experimental results substantiate that our method
outperforms the existing HSI restoration methods.

II. NOTATIONS AND PRELIMINARIES

A. Notations

Scalar, vector, matrix, and tensor are denoted by x , x, X,
and X , respectively. For an n-way tensor X ∈ RI1×I2×···×In ,
X(k) ∈ RIk×I1,...,Ik−1 Ik+1,...,In and X⟨k⟩ ∈ RIk×Ik+1,...,In I1,...,Ik−1

denote the first mode-k and second mode-k unfolding matrices
of X , respectively. We use X (i, :, :), X (:, j, :), and X (:, :, k)

to denote, respectively, the i th horizontal, j-lateral, and k-
frontal slice of a three-way tensor X ∈ RI1×I2×I3 , respectively.
The ℓ1 norm and Frobenius norm are defined‘ as ∥X∥1 =∑

i1i2,...,in
|xi1i2,...,in | and ∥X∥F = (

∑
i1i2,...,in

|xi1i2,...,in |
2)1/2,

respectively. The matrix nuclear norm is defined as ∥X∥∗ =∑
i σi (X), where σi (X) is the i th singular value of X. The

mode-k tensor–matrix product of a tensor X ∈ RI1×I2×···×In

and a matrix U ∈ RJ×Ik is an I1 × I2 × · · · × Ik−1 ×

J × Ik+1 · · · × In tensor denoted by X ×k U and satisfied
(X ×k U)i1,...,ik−1 j ik+1,...,in =

∑Ik
ik=1 xi1i2,...,in u j ik .

B. Preliminaries

TR decomposition represents that an n-way tensor X ∈

RI1×I2×···×In is decomposed as a series of three-way tensor
factors G(1), G(2), . . . , and G(n), where G(k)

∈ Rrk×Ik×rk+1 and
r1 = rn+1. r = [r1, r2, . . . , rn] is denoted as TR rank [21].
Mathematically, it is formulated as follows:

X = 8(G(1),G(2), . . . ,G(n)) (1)

where Xi1i2,...,in = Trace(G(1)
(i1)

G(2)
(i2)

, . . . , G(n)
(in)

), Gk
ik

denotes the
ik-th lateral slice matrix of G(k), and Trace(·) is the matrix
trace operation. The tensor multilinear product of two adjacent
tensor factors G(k)

∈ Rrk×Ik×rk+1 and G(k+1)
∈ Rrk+1×Ik+1×rk+2 is

defined as follows:

G(k,k+1)(( jk − 1)In + ik) = G(k)(ik)G(k+1)( jk) (2)

for ik = 1, . . . , Ik, jk = 1, . . . , Ik+1, and where G(k,k+1)
∈

Rrk×Ik Ik+1×rk+2 . The matrix representation of TR decomposition
is formulated as follows:

X⟨k⟩ = G(k)
(2)

(
G(̸=k)

⟨2⟩

)T
, (k = 1, . . . , n) (3)

where G(̸=k)
⟨2⟩

is the matrix unfolding of G(k+1,k+2,...,n,1,...,k−1)
∈

Rrk+1×
∏n

i=1,i ̸=k Ii ×rk .

III. PROPOSED METHOD

A. Problem Formulation

We assume that the observed HSI is degraded by mixed
noise, including Gaussian noise, impulse noise, and stripe
noise. To address the high-intensity stripe noise in practical
scenarios, we formulate the HSI degradation model as follows:

Y = X + B + S +N (4)

where Y , X , B, S, and N denote the observed HSI, clean HSI,
stripe noise, sparse noise (impulse noise), and Gaussian noise,
respectively. All entities are the dimension of M × N × B,
where M × N denotes the spatial dimension and B denotes
the spectral dimension.
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The task of restoring X from Y is an ill-posed inverse
problem, and the regularization model can be formulated as
follows:

min
X ,B,S

αRX (X ) + λRB(B) + τ RS(S)

s.t. ∥Y − X − B − S∥
2
F ≤ ε (5)

where RX (X ), RB(B), and RS(S) serve as the regularization
terms describing the prior information of the desired HSI,
stripe noise, and sparse noise, respectively. α, λ, and τ

are regularization parameters, and ε represents the level of
Gaussian noise. For sparse noise S, RS(S) is typically set as
∥S∥1.

B. Proposed U3STR Model

1) Prior Information of HSI: From Fig. 1, it can be
observed that the HSI exhibits a high correlation in the
spatial–spectral dimension. To capture the spatial–spectral
correlation, traditional Tucker decomposition and CANDE-
COMP/PARAFAC (CP) decomposition can be employed to
approximate the HSI. However, Tucker decomposition is lim-
ited by a rapid increase in parameter numbers due to its core
tensor, while CP decomposition simplistically assumes equal
importance of spatial and spectral correlations, overlooking
the generally higher spectral correlation within HSI. Recently,
TR decomposition has emerged as superior to both Tucker and
CP in handling various HSI tasks, such as HSI completion [22]
and fusion [23], with its benefits including the following: 1) a
significantly reduced parameter count compared with Tucker
decomposition and 2) TR factors can be circularly shifted
and treated equivalently, enabling a balanced consideration of
all dimensional correlations. Therefore, we employ the TR
decomposition to approximate the HSI, i.e.,

X = 8(G(1),G(2),G(3)) (6)

where G(1) and G(2) are two spatial TR factors in the spatial
vertical dimension and spatial horizontal dimension, respec-
tively, and G(3) is the spectral TR factor.

In addition to the global spatial–spectral correlation, HSI
also has local spatial–spectral smoothness. To capture this
prior information, exploring the interplay between HSI and its
TR factors is crucial. From the matrix representation of TR
decomposition in (3), it is clear that all columns of G(k)

(2) form
the basis set for the lower dimensional space of X⟨k⟩. Based
on the principle that continuous basis can generate continuous
data, the local smoothness constraint of each column of the
factor G(k)

(2) can maintain the local smoothness of HSI in
the mode-k dimension. Considering that stripe noise presents
stronger local smoothness in the spatial vertical dimension,
we consequently employ the unidirectional spatial and spectral
smoothed regularizations to constrain the spatial horizontal
and spectral TR factors, respectively, i.e.,

Rsmooth(X ) = ∥G(2)
×2 D2∥1 + ∥G(3)

×2 D3∥1 (7)

where D2 ∈ RN×N and D3 ∈ RB×B are first-order difference
matrices.

2) Prior Information of Stripe Noise: Unlike other noise,
stripe noise exhibits significant structural characteristics. Com-
pared with the image component, stripe noise is not only
more low rank in the spatial vertical dimension but also shows
greater local smoothness along the stripe direction. To depict
the structural properties of stripe noise and avoid conflicts with
image regularizations, we formulate RB as follows:

RB(B) = λ1∥B ×1 D1∥1 + λ2

B∑
k=1

∥B(:, :, k)∥∗ (8)

where D1 ∈ RM×M is the first-order difference matrix.
Based on the above prior exploration and regularization term

design, the proposed U3STR model is formulated as follows:

min
G(i),B,S

α

3∑
i=2

∥G(i)
×2 Di∥1 + λ1∥B ×1 D1∥1

+ λ2

B∑
k=1

∥B(:, :, k)∥∗ + τ∥S∥1

s.t. ∥Y − 8(G(1),G(2),G(3)) − B − S∥
2
F ≤ ε. (9)

Model (9) can be solved by alternating direction method of
multipliers (ADMM) [24] effectively. A detailed optimization
process can be found in the supplementary material.

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments on both simu-
lated and real data to substantiate the effectiveness of the
proposed method. Six HSI denoising and destriping meth-
ods are chosen for comparison, including low-rank tensor
decomposition method (LRTD) [6], fast and parameter-free
HSI mixed noise removal method (FastHyMix) [8], adaptive
HSI mixed noise removal method (Adhyde) [18], bandwise
asymmetric Laplacian noise-based matrix factorization method
(BALMF) [9], DLR [19], and FGLR [20]. The peak signal-to-
noise ratio (PSNR), structural similarity (SSIM), and spectral
angle mapper (SAM) are employed to evaluate the restoration
performance. We carefully fine-tuned the parameters according
to the recommendations in the corresponding literature to
ensure optimal performance in all tests. All experiments are
implemented on MATLAB (R2021b) using Windows 11 with
an Intel Core i7-8700 CPU 3.20-GHz processor and 16-GB
RAM. The pixel values of each band are normalized to [0, 1].

A. Simulated Experiments

Two HSI datasets, including Pavia City Center (Pavia)
and Washington DC Mall (WDC), are employed as sim-
ulated datasets. The subimage sizes of Pavia and WDC
are 200 × 200 × 80 and 256 × 256 × 191 in our simu-
lated experiments, respectively. To comprehensively simulate
a realistic mixed noisy HSI with high-intensity stripe noise,
we consider the random stripe and periodic stripe that appeared
in push-broom and cross-track scanning sensors, respectively.
The simulated noise cases are presented as follows.

Case 1: Zero-mean Gaussian noise and impulse noise are
added to all bands with different levels. The noise standard
deviation of Gaussian noise and the percentage of impulse
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TABLE I
QUANTITATIVE EVALUATION INDICES OF DIFFERENT METHODS ON THE SIMULATED PAVIA AND WDC DATASETS

Fig. 2. (Top) Restored results of different methods on band (15, 48, 76) of the Pavia dataset under Case 2-1. (Bottom) Band (122, 48, 182) of the WDC
dataset under Case 1-2.

noise in each band are randomly selected from the interval
[0, 0.2]. Moreover, two different proportions of random stripe
noise are added to the image: 1) 20%–30% and 2) 40%–50%
of all bands are randomly selected to add stripes, and the
number of stripes on each chosen band is randomly selected
as follows: 1) 20%–30% and 2) 40%–50% of the image width.

Case 2: The Gaussian noise and impulse noise are added
similar to Case 1. Moreover, the following hold: 1) 30% and
2) 50% of all bands are randomly selected to add periodic
stripes, and the stripe proportion on each chosen band is set
as follows: 1) 70% and 2) 50%. The period of stripes in each
band is set as 10.

The quantitative metrics of different methods on the simu-
lated experiments are listed in Table I, highlighting the best
results for each index in bold. It is observed that the proposed
U3STR outperforms the current state-of-the-art methods in
terms of PSNR, SSIM, and SAM values in most cases.
Moreover, the time cost is acceptable compared with other
methods. To visually compare the restoration performance of
different methods, false-color images of restoration results are
presented in Fig. 2. The comparison methods FastHyMix,
BALMF, and Adhyde model the noise as a nonindependent
and identically distributed mixture of Gaussians (NMoG) mod-
eling, effectively handling random stripes but struggling with
periodic stripes. The U3STR method outperforms comparison
methods in handling various mixed noise types, exceling in
preserving spatial details and spectral consistency.

B. Real Experiments

To further validate the performance of our U3STR, we test
all methods on the real GaoFen-5 (GF-5) dataset, which

TABLE II
AVERAGE QUANTITATIVE RESULTS OF ABLATION

STUDIES ON THE PAVIA DATASET

is typically corrupted by a mixture of Gaussian noise,
impulse noise, and dense stripe noise. A subregion of size
256 × 256 × 155 is extracted for the experiment.

Visual comparison of denoising and destriping performance
is conducted on a high-intensity noise band. Fig. 3 shows the
restoration result on band 152 of the real GF-5 dataset. It can
be observed that comparison methods exhibit some degree
of excessive smoothness and spectral distortion, resulting in
image detail loss. In contrast, U3STR effectively eliminates
noise while preserving image detail.

C. Discussion

1) Ablation Study: To demonstrate the effectiveness of three
distinct difference operator terms, we have performed ablation
studies by disabling each difference operator term, i.e., the
spatial vertical difference term (∥B×1 D1∥1), spatial horizontal
difference term (∥G(2)

×2 D2∥1), and spectral difference term
(∥G(3)

×2 D3∥1), which are referred as w/o D1, w/o D2, and
w/o D3, respectively. Table II lists the average quantitative
results of ablation studies on the Pavia dataset. It is observed
that the three different difference operators contribute to the
performance of the proposed method.
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Fig. 3. Restored results of different methods on band 152 of the real GF-5 dataset.

Fig. 4. Relative change values of the image component versus the iteration
number on the simulated Pavia and WDC datasets. (a) Pavia. (b) WDC.

2) Numerical Convergence: Fig. 4 displays the relative
change value of the image component of our method on the
simulated Pavia and WDC datasets under Case 1-1. We can
observe that the relative change value converges to zero with
the iteration increases, indicating the numerical convergence
guarantee of our method.

V. CONCLUSION

In this letter, we proposed a novel method called U3STR
for HSI denoising and destriping. This method is highly
effective in eliminating mixed noise, especially those of high
intensity and dense stripe noise. The potent TR decomposition
is employed to approximate the HSI, allowing the spatial infor-
mation of HSI to be transferred to its TR factors. By encoding
the local smoothness of TR factors, the global spatial–spectral
correlation and local spatial–spectral smoothness of HSI are
fully considered. The application of the ADMM algorithm
guarantees an effective optimization to the proposed U3STR
model. A series of simulated and real data experiments
demonstrate the superior performance of our method over
other advanced HSI denoising and destriping approaches,
as evidenced by both visual and quantitative evaluations.
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